Refine
Document Type
- Conference proceeding (38)
- Journal article (7)
- Book chapter (5)
Has full text
- yes (50)
Is part of the Bibliography
- yes (50)
Institute
- Informatik (50)
Publisher
- Association for Computing Machinery (15)
- Springer (9)
- IEEE (7)
- OpenProceedings (4)
- Gesellschaft für Informatik e.V (3)
- Universität Konstanz (3)
- IARIA (2)
- ACM (1)
- Association of Computing Machinery (1)
- CIDR (1)
In the present paper we demonstrate a novel approach to handling small updates on Flash called In-Place Appends (IPA). It allows the DBMS to revisit the traditional write behavior on Flash. Instead of writing whole database pages upon an update in an out-of-place manner on Flash, we transform those small updates into update deltas and append them to a reserved area on the very same physical Flash page. In doing so we utilize the commonly ignored fact that under certain conditions Flash memories can support in-place updates to Flash pages without a preceding erase operation.
The approach was implemented under Shore-MT and evaluated on real hardware. Under standard update-intensive workloads we observed 67% less page invalidations resulting in 80% lower garbage collection overhead, which yields a 45% increase in transactional throughput, while doubling Flash longevity at the same time. The IPA outperforms In-Page Logging (IPL) by more than 50%.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware – the OpenSSD Flash research platform. During the demonstration we allow the users to interact with the system and gain hands on experience of its performance under different demonstration scenarios. These involve various workloads such as TPC-B, TPC-C or TATP.
In this paper we build on our research in data management on native Flash storage. In particular we demonstrate the advantages of intelligent data placement strategies. To effectively manage phsical Flash space and organize the data on it, we utilize novel storage structures such as regions and groups. These are coupled to common DBMS logical structures, thus require no extra overhead for the DBA. The experimental results indicate an improvement of up to 2x, which doubles the longevity of Flash SSD. During the demonstration the audience can experience the advantages of the proposed approach on real Flash hardware.
Asymmetric read/write storage technologies such as Flash are becoming
a dominant trend in modern database systems. They introduce
hardware characteristics and properties which are fundamentally
different from those of traditional storage technologies such
as HDDs.
Multi-Versioning Database Management Systems (MV-DBMSs)
and Log-based Storage Managers (LbSMs) are concepts that can
effectively address the properties of these storage technologies but
are designed for the characteristics of legacy hardware. A critical
component of MV-DBMSs is the invalidation model: commonly,
transactional timestamps are assigned to the old and the new version,
resulting in two independent (physical) update operations.
Those entail multiple random writes as well as in-place updates,
sub-optimal for new storage technologies both in terms of performance
and endurance. Traditional page-append LbSM approaches
alleviate random writes and immediate in-place updates, hence reducing
the negative impact of Flash read/write asymmetry. Nevertheless,
they entail significant mapping overhead, leading to write
amplification.
In this work we present an approach called Snapshot Isolation
Append Storage Chains (SIAS-Chains) that employs a combination
of multi-versioning, append storage management in tuple granularity
and novel singly-linked (chain-like) version organization.
SIAS-Chains features: simplified buffer management, multi-version
indexing and introduces read/write optimizations to data placement
on modern storage media. SIAS-Chains algorithmically avoids
small in-place updates, caused by in-place invalidation and converts
them into appends. Every modification operation is executed
as an append and recently inserted tuple versions are co-located.
Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity.
In the present paper we present NoFTL KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL KV reduces write-amplification 19x and improves storage longevity by imately the same factor.
Modern mixed (HTAP)workloads execute fast update-transactions and long running analytical queries on the same dataset and system. In multi-version (MVCC) systems, such workloads result in many short-lived versions and long version-chains as well as in increased and frequent maintenance overhead.
Consequently, the index pressure increases significantly. Firstly, the frequent modifications cause frequent creation of new versions, yielding a surge in index maintenance overhead. Secondly and more importantly, index-scans incur extra I/O overhead to determine, which of the resulting tuple versions are visible to the executing transaction (visibility-check) as current designs only store version/timestamp information in the base table – not in the index. Such index-only visibility-check is critical for HTAP workloads on large datasets.
In this paper we propose the Multi Version Partitioned B-Tree (MV-PBT) as a version-aware index structure, supporting index-only visibility checks and flash-friendly I/O patterns. The experimental evaluation indicates a 2x improvement for analytical queries and 15% higher transactional throughput under HTAP workloads. MV-PBT offers 40% higher tx. throughput compared to WiredTiger’s LSM-Tree implementation under YCSB.
In this paper, we propose a radical new approach for scale-out distributed DBMSs. Instead of hard-baking an architectural model, such as a shared-nothing architecture, into the distributed DBMS design, we aim for a new class of so-called architecture-less DBMSs. The main idea is that an architecture-less DBMS can mimic any architecture on a per-query basis on-the-fly without any additional overhead for reconfiguration. Our initial results show that our architecture-less DBMS AnyDB can provide significant speedup across varying workloads compared to a traditional DBMS implementing a static architecture.
Flash SSDs are omnipresent as database storage. HDD replacement is seamless since Flash SSDs implement the same legacy hardware and software interfaces to enable backward compatibility. Yet, the price paid is high as backward compatibility masks the native behaviour, incurs significant complexity and decreases I/O performance, making it non-robust and unpredictable. Flash SSDs are black-boxes. Although DBMS have ample mechanisms to control hardware directly and utilize the performance potential of Flash memory, the legacy interfaces and black-box architecture of Flash devices prevent them from doing so.
In this paper we demonstrate NoFTL, an approach that enables native Flash access and integrates parts of the Flashmanagement functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. NoFTL is implemented on real hardware based on the OpenSSD research platform. The contributions of this paper include: (i) a description of the NoFTL native Flash storage architecture; (ii) its integration in Shore-MT and (iii) performance evaluation of NoFTL on a real Flash SSD and on an on-line data-driven Flash emulator under TPCB, C,E and H workloads. The performance evaluation results indicate an improvement of at least 2.4x on real hardware over conventional Flash storage; as well as better utilisation of native Flash parallelism.
Nowadays almost every major company has a monitoring system and produces log data to analyse their systems. To perform analysation on the log data and to extract experience for future decisions it is important to transform and synchronize different time series. For synchronizing multiple time series several methods are provided so that they are leading to a synchronized uniform time series. This is achieved by using discretisation and approximation methodics. Furthermore the discretisation through ticks is demonstrated, as well as the respectivly illustrated results.
Rapidly growing data volumes push today's analytical systems close to the feasible processing limit. Massive parallelism is one possible solution to reduce the computational time of analytical algorithms. However, data transfer becomes a significant bottleneck since it blocks system resources moving data-to-code. Technological advances allow to economically place compute units close to storage and perform data processing operations close to data, minimizing data transfers and increasing scalability. Hence the principle of Near Data Processing (NDP) and the shift towards code-to-data. In the present paper we claim that the development of NDP-system architectures becomes an inevitable task in the future. Analytical DBMS like HPE Vertica have multiple points of impact with major advantages which are presented within this paper.
In this paper we present our work in progress on revisiting traditional DBMS mechanisms to manage space on native Flash and how it is administered by the DBA. Our observations and initial results show that: the standard logical database structures can be used for physical organization of data on native Flash; at the same time higher DBMS performance is achieved without incurring extra DBA overhead. Initial experimental evaluation indicates a 20% increase in transactional throughput under TPC-C, by performing intelligent data placement on Flash, less erase operations and thus better Flash longevity.