Refine
Document Type
- Conference Proceeding (20)
- Part of a Book (5)
New storage technologies, such as Flash and Non- Volatile Memories, with fundamentally different properties are appearing. Leveraging their performance and endurance requires a redesign of existing architecture and algorithms in modern high performance databases. Multi-Version Concurrency Control (MVCC) approaches in database systems, maintain multiple timestamped versions of a tuple. Once a transaction reads a tuple the database system tracks and returns the respective version eliminating lock-requests. Hence under MVCC reads are never blocked, which leverages well the excellent read performance (high throughput, low latency) of new storage technologies. Upon tuple updates, however, established implementations of MVCC approaches (such as Snapshot Isolation) lead to multiple random writes – caused by (i) creation of the new and (ii) in-place invalidation of the old version – thus generating suboptimal access patterns for the new storage media. The combination of an append based storage manager operating with tuple granularity and snapshot isolation addresses asymmetry and in-place updates. In this paper, we highlight novel aspects of log-based storage, in multi-version database systems on new storage media. We claim that multi-versioning and append-based storage can be used to effectively address asymmetry and endurance. We identify multi-versioning as the approach to address dataplacement in complex memory hierarchies. We focus on: version handling, (physical) version placement, compression and collocation of tuple versions on Flash storage and in complex memory hierarchies. We identify possible read- and cacherelated optimizations.
Many future Services Oriented Architecture (SOA) systems may be pervasive SmartLife applications that provide real-time support for users in everyday tasks and situations. Development of such applications will be challenging, but in this position paper we argue that their ongoing maintenance may be even more so. Ontological modelling of the application may help to ease this burden, but maintainers need to understand a system at many levels, from a broad architectural perspective down to the internals of deployed components. Thus we will need consistent models that span the range of views, from business processes through system architecture to maintainable code. We provide an initial example of such a modelling approach and illustrate its application in a semantic browser to aid in software maintenance tasks.
The amount of image data has been rising exponentially over the last decades due to numerous trends like social networks, smartphones, automotive, biology, medicine and robotics. Traditionally, file systems are used as storage. Although they are easy to use and can handle large data volumes, they are suboptimal for efficient sequential image processing due to the limitation of data organisation on single images. Database systems and especially column-stores support more stuctured storage and access methods on the raw data level for entiere series.
In this paper we propose definitions of various layouts for an efficient storage of raw image data and metadata in a column store. These schemes are designed to improve the runtime behaviour of image processing operations. We present a tool called column-store Image Processing Toolbox (cIPT) allowing to easily combine the data layouts and operations for different image processing scenarios.
The experimental evaluation of a classification task on a real world image dataset indicates a performance increase of up to 15x on a column store compared to a traditional row-store (PostgreSQL) while the space consumption is reduced 7x. With these results cIPT provides the basis for a future mature database feature.
Flash SSDs are omnipresent as database storage. HDD replacement is seamless since Flash SSDs implement the same legacy hardware and software interfaces to enable backward compatibility. Yet, the price paid is high as backward compatibility masks the native behaviour, incurs significant complexity and decreases I/O performance, making it non-robust and unpredictable. Flash SSDs are black-boxes. Although DBMS have ample mechanisms to control hardware directly and utilize the performance potential of Flash memory, the legacy interfaces and black-box architecture of Flash devices prevent them from doing so.
In this paper we demonstrate NoFTL, an approach that enables native Flash access and integrates parts of the Flashmanagement functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. NoFTL is implemented on real hardware based on the OpenSSD research platform. The contributions of this paper include: (i) a description of the NoFTL native Flash storage architecture; (ii) its integration in Shore-MT and (iii) performance evaluation of NoFTL on a real Flash SSD and on an on-line data-driven Flash emulator under TPCB, C,E and H workloads. The performance evaluation results indicate an improvement of at least 2.4x on real hardware over conventional Flash storage; as well as better utilisation of native Flash parallelism.
In the present tutorial we perform a cross-cut analysis of database systems from the perspective of modern storage technology, namely Flash memory. We argue that neither the design of modern DBMS, nor the architecture of flash storage technologies are aligned with each other. The result is needlessly suboptimal DBMS performance and inefficient flash utilisation as well as low flash storage endurance and reliability. We showcase new DBMS approaches with improved algorithms and leaner architectures, designed to leverage the properties of modern storage technologies. We cover the area of transaction management and multi-versioning, putting a special emphasis on: (i) version organisation models and invalidation mechanisms in multi-versioning DBMS; (ii) Flash storage management especially on append-based storage in tuple granularity; (iii) Flash-friendly buffer management; as well as (iv) improvements in the searching and indexing models. Furthermore, we present our NoFTL approach to native Flash access that integrates parts of the flash-management functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. In addition, we cover the basics of building large Flash storage for DBMS and revisit some of the RAID techniques and principles.
Real Time Charging (RTC) applications that reside in the telecommunications domain have the need for extremely fast database transactions. Today´s providers rely mostly on in-memory databases for this kind of information processing. A flexible and modular benchmark suite specifically designed for this domain provides a valuable framework to test the performance of different DB candidates. Besides a data and a load generator, the suite also includes decoupled database connectors and use case components for convenient customization and extension. Such easily produced test results can be used as guidance for choosing a subset of candidates for further tuning/testing and finally evaluating the database most suited to the chosen use cases. This is why our benchmark suite can be of value for choosing databases for RTC use cases.
Characteristics of modern computing and storage technologies fundamentally differ from traditional hardware. There is a need to optimally leverage their performance, endurance and energy consumption characteristics. Therefore, existing architectures and algorithms in modern high performance database management systems have to be redesigned and advanced. Multi Version Concurrency Control (MVCC) approaches in data-base management systems maintain multiple physically independent tuple versions. Snapshot isolation approaches enable high parallelism and concurrency in workloads with almost serializable consistency level. Modern hardware technologies benefit from multi-version approaches. Indexing multi-version data on modern hardware is still an open research area. In this paper, we provide a survey of popular multi-version indexing approaches and an extended scope of high performance single-version approaches. An optimal multi-version index structure brings look-up efficiency of tuple versions, which are visible to transactions, and effort on index maintenance in balance for different workloads on modern hardware technologies.
Database management systems (DBMS) are critical performance components in large scale applications under modern update intensive workloads. Additional access paths accelerate look-up performance in DBMS for frequently queried attributes, but the required maintenance slows down update performance. The ubiquitous B+ tree is a commonly used key-indexed access path that is able to support many required functionalities with logarithmic access time to requested records. Modern processing and storage technologies and their characteristics require reconsideration of matured indexing approaches for today's workloads. Partitioned B-trees (PBT) leverage characteristics of modern hardware technologies and complex memory hierarchies as well as high update rates and changes in workloads by maintaining partitions within one single B+-Tree. This paper includes an experimental evaluation of PBTs optimized write pattern and performance improvements. With PBT transactional throughput under TPC-C increases 30%; PBT results in beneficial sequential write patterns even in presence of updates and maintenance operations.
Blockchains yield to new workloads in database management systems and K/V-stores. Distributed Ledger Technology (DLT) is a technique for managing transactions in ’trustless’ distributed systems. Yet, clients of nodes in blockchain networks are backed by ’trustworthy’ K/V-Stores, like LevelDB or RocksDB in Ethereum, which are based on Log-Structured Merge Trees (LSM Trees). However, LSM-Trees do not fully match the properties of blockchains and enterprise workloads.
In this paper, we claim that Partitioned B-Trees (PBT) fit the properties of this DLT: uniformly distributed hash keys, immutability, consensus, invalid blocks, unspent and off-chain transactions, reorganization and data state / version ordering in a distributed log-structure. PBT can locate records of newly inserted key-value pairs, as well as data of unspent transactions, in separate partitions in main memory. Once several blocks acquire consensus, PBTs evict a whole partition, which becomes immutable, to secondary storage. This behavior minimizes write amplification and enables a beneficial sequential write pattern on modern hardware. Furthermore, DLT implicate some type of log-based versioning. PBTs can serve as MV-store for data storage of logical blocks and indexing in multi-version concurrency control (MVCC) transaction processing.
Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity.
In the present paper we present NoFTL KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL KV reduces write-amplification 19x and improves storage longevity by imately the same factor.