Refine
Document Type
- Conference Proceeding (27)
- Part of a Book (5)
- Article (1)
In this paper, we present a new approach for achieving robust performance of data structures making it easier to reuse the same design for different hardware generations but also for different workloads. To achieve robust performance, the main idea is to strictly separate the data structure design from the actual strategies to execute access operations and adjust the actual execution strategies by means of so-called configurations instead of hard-wiring the execution strategy into the data structure. In our evaluation we demonstrate the benefits of this configuration approach for individual data structures as well as complex OLTP workloads.
Modern mixed (HTAP)workloads execute fast update-transactions and long running analytical queries on the same dataset and system. In multi-version (MVCC) systems, such workloads result in many short-lived versions and long version-chains as well as in increased and frequent maintenance overhead.
Consequently, the index pressure increases significantly. Firstly, the frequent modifications cause frequent creation of new versions, yielding a surge in index maintenance overhead. Secondly and more importantly, index-scans incur extra I/O overhead to determine, which of the resulting tuple versions are visible to the executing transaction (visibility-check) as current designs only store version/timestamp information in the base table – not in the index. Such index-only visibility-check is critical for HTAP workloads on large datasets.
In this paper we propose the Multi Version Partitioned B-Tree (MV-PBT) as a version-aware index structure, supporting index-only visibility checks and flash-friendly I/O patterns. The experimental evaluation indicates a 2x improvement for analytical queries and 15% higher transactional throughput under HTAP workloads. MV-PBT offers 40% higher tx. throughput compared to WiredTiger’s LSM-Tree implementation under YCSB.
Massive data transfers in modern key/value stores resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, have yet to see widespread use.
In this paper we introduce nKV, which is a key/value store utilizing native computational storage and near-data processing. On the one hand, nKV can directly control the data and computation placement on the underlying storage hardware. On the other hand, nKV propagates the data formats and layouts to the storage device where, software and hardware parsers and accessors are implemented. Both allow NDP operations to execute in host-intervention-free manner, directly on physical addresses and thus better utilize the underlying hardware. Our performance evaluation is based on executing traditional KV operations (GET, SCAN) and on complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on real hardware – the COSMOS+ platform.
The tale of 1000 cores: an evaluation of concurrency control on real(ly) large multi-socket hardware
(2020)
In this paper, we set out the goal to revisit the results of “Starring into the Abyss [...] of Concurrency Control with [1000] Cores” and analyse in-memory DBMSs on today’s large hardware. Despite the original assumption of the authors, today we do not see single-socket CPUs with 1000 cores. Instead multi-socket hardware made its way into production data centres. Hence, we follow up on this prior work with an evaluation of the characteristics of concurrency control schemes on real production multi-socket hardware with 1568 cores. To our surprise, we made several interesting findings which we report on in this paper.
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become viable.
The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under NoFTL-KV and the COSMOS hardware platform.
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.
Active storage
(2019)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
We introduce IPA-IDX – an approach to handle index modifications modern storage technologies (NVM, Flash) as physical in-place appends, using simplified physiological log records. IPA-IDX provides similar performance and longevity advantages for indexes as basic IPA [5] does for tables. The selective application of IPA-IDX and basic IPA to certain regions and objects, lowers the GC overhead by over 60%, while keeping the total space overhead to 2%. The combined effect of IPA and IPA-IDX increases performance by 28%.
In the present tutorial we perform a cross-cut analysis of database storage management from the perspective of modern storage technologies. We argue that neither the design of modern DBMS, nor the architecture of modern storage technologies are aligned with each other. Moreover, the majority of the systems rely on a complex multi-layer and compatibility oriented storage stack. The result is needlessly suboptimal DBMS performance, inefficient utilization, or significant write amplification due to outdated abstractions and interfaces. In the present tutorial we focus on the concept of native storage, which is storage operated without intermediate abstraction layers over an open native storage interface and is directly controlled by the DBMS.