Refine
Document Type
- Conference Proceeding (27)
- Part of a Book (5)
- Article (1)
Real Time Charging (RTC) applications that reside in the telecommunications domain have the need for extremely fast database transactions. Today´s providers rely mostly on in-memory databases for this kind of information processing. A flexible and modular benchmark suite specifically designed for this domain provides a valuable framework to test the performance of different DB candidates. Besides a data and a load generator, the suite also includes decoupled database connectors and use case components for convenient customization and extension. Such easily produced test results can be used as guidance for choosing a subset of candidates for further tuning/testing and finally evaluating the database most suited to the chosen use cases. This is why our benchmark suite can be of value for choosing databases for RTC use cases.
In the present tutorial we perform a cross-cut analysis of database systems from the perspective of modern storage technology, namely Flash memory. We argue that neither the design of modern DBMS, nor the architecture of flash storage technologies are aligned with each other. The result is needlessly suboptimal DBMS performance and inefficient flash utilisation as well as low flash storage endurance and reliability. We showcase new DBMS approaches with improved algorithms and leaner architectures, designed to leverage the properties of modern storage technologies. We cover the area of transaction management and multi-versioning, putting a special emphasis on: (i) version organisation models and invalidation mechanisms in multi-versioning DBMS; (ii) Flash storage management especially on append-based storage in tuple granularity; (iii) Flash-friendly buffer management; as well as (iv) improvements in the searching and indexing models. Furthermore, we present our NoFTL approach to native Flash access that integrates parts of the flash-management functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. In addition, we cover the basics of building large Flash storage for DBMS and revisit some of the RAID techniques and principles.
Flash SSDs are omnipresent as database storage. HDD replacement is seamless since Flash SSDs implement the same legacy hardware and software interfaces to enable backward compatibility. Yet, the price paid is high as backward compatibility masks the native behaviour, incurs significant complexity and decreases I/O performance, making it non-robust and unpredictable. Flash SSDs are black-boxes. Although DBMS have ample mechanisms to control hardware directly and utilize the performance potential of Flash memory, the legacy interfaces and black-box architecture of Flash devices prevent them from doing so.
In this paper we demonstrate NoFTL, an approach that enables native Flash access and integrates parts of the Flashmanagement functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. NoFTL is implemented on real hardware based on the OpenSSD research platform. The contributions of this paper include: (i) a description of the NoFTL native Flash storage architecture; (ii) its integration in Shore-MT and (iii) performance evaluation of NoFTL on a real Flash SSD and on an on-line data-driven Flash emulator under TPCB, C,E and H workloads. The performance evaluation results indicate an improvement of at least 2.4x on real hardware over conventional Flash storage; as well as better utilisation of native Flash parallelism.
Nowadays almost every major company has a monitoring system and produces log data to analyse their systems. To perform analysation on the log data and to extract experience for future decisions it is important to transform and synchronize different time series. For synchronizing multiple time series several methods are provided so that they are leading to a synchronized uniform time series. This is achieved by using discretisation and approximation methodics. Furthermore the discretisation through ticks is demonstrated, as well as the respectivly illustrated results.
Rapidly growing data volumes push today's analytical systems close to the feasible processing limit. Massive parallelism is one possible solution to reduce the computational time of analytical algorithms. However, data transfer becomes a significant bottleneck since it blocks system resources moving data-to-code. Technological advances allow to economically place compute units close to storage and perform data processing operations close to data, minimizing data transfers and increasing scalability. Hence the principle of Near Data Processing (NDP) and the shift towards code-to-data. In the present paper we claim that the development of NDP-system architectures becomes an inevitable task in the future. Analytical DBMS like HPE Vertica have multiple points of impact with major advantages which are presented within this paper.
Asymmetric read/write storage technologies such as Flash are becoming
a dominant trend in modern database systems. They introduce
hardware characteristics and properties which are fundamentally
different from those of traditional storage technologies such
as HDDs.
Multi-Versioning Database Management Systems (MV-DBMSs)
and Log-based Storage Managers (LbSMs) are concepts that can
effectively address the properties of these storage technologies but
are designed for the characteristics of legacy hardware. A critical
component of MV-DBMSs is the invalidation model: commonly,
transactional timestamps are assigned to the old and the new version,
resulting in two independent (physical) update operations.
Those entail multiple random writes as well as in-place updates,
sub-optimal for new storage technologies both in terms of performance
and endurance. Traditional page-append LbSM approaches
alleviate random writes and immediate in-place updates, hence reducing
the negative impact of Flash read/write asymmetry. Nevertheless,
they entail significant mapping overhead, leading to write
amplification.
In this work we present an approach called Snapshot Isolation
Append Storage Chains (SIAS-Chains) that employs a combination
of multi-versioning, append storage management in tuple granularity
and novel singly-linked (chain-like) version organization.
SIAS-Chains features: simplified buffer management, multi-version
indexing and introduces read/write optimizations to data placement
on modern storage media. SIAS-Chains algorithmically avoids
small in-place updates, caused by in-place invalidation and converts
them into appends. Every modification operation is executed
as an append and recently inserted tuple versions are co-located.
Blockchains yield to new workloads in database management systems and K/V-stores. Distributed Ledger Technology (DLT) is a technique for managing transactions in ’trustless’ distributed systems. Yet, clients of nodes in blockchain networks are backed by ’trustworthy’ K/V-Stores, like LevelDB or RocksDB in Ethereum, which are based on Log-Structured Merge Trees (LSM Trees). However, LSM-Trees do not fully match the properties of blockchains and enterprise workloads.
In this paper, we claim that Partitioned B-Trees (PBT) fit the properties of this DLT: uniformly distributed hash keys, immutability, consensus, invalid blocks, unspent and off-chain transactions, reorganization and data state / version ordering in a distributed log-structure. PBT can locate records of newly inserted key-value pairs, as well as data of unspent transactions, in separate partitions in main memory. Once several blocks acquire consensus, PBTs evict a whole partition, which becomes immutable, to secondary storage. This behavior minimizes write amplification and enables a beneficial sequential write pattern on modern hardware. Furthermore, DLT implicate some type of log-based versioning. PBTs can serve as MV-store for data storage of logical blocks and indexing in multi-version concurrency control (MVCC) transaction processing.
Active storage
(2019)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
The amount of image data has been rising exponentially over the last decades due to numerous trends like social networks, smartphones, automotive, biology, medicine and robotics. Traditionally, file systems are used as storage. Although they are easy to use and can handle large data volumes, they are suboptimal for efficient sequential image processing due to the limitation of data organisation on single images. Database systems and especially column-stores support more stuctured storage and access methods on the raw data level for entiere series.
In this paper we propose definitions of various layouts for an efficient storage of raw image data and metadata in a column store. These schemes are designed to improve the runtime behaviour of image processing operations. We present a tool called column-store Image Processing Toolbox (cIPT) allowing to easily combine the data layouts and operations for different image processing scenarios.
The experimental evaluation of a classification task on a real world image dataset indicates a performance increase of up to 15x on a column store compared to a traditional row-store (PostgreSQL) while the space consumption is reduced 7x. With these results cIPT provides the basis for a future mature database feature.