Refine
Document Type
- Conference Proceeding (2)
- Part of a Book (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- Springer (3) (remove)
The use of Wireless Sensor and Actuator Networks (WSAN) as an enabling technology for Cyber-Physical Systems has increased significantly in recent past. The challenges that arise in different application areas of Cyber- Physical Systems, in general, and in WSAN in particular, are getting the attention of academia and industry both. Since reliability issues for message delivery in wireless communication are of critical importance for certain safety related applications, it is one of the areas that has received significant focus in the research community. Additionally, the diverse needs of different applications put different demands on the lower layers in the protocol stack, thus necessitating such mechanisms in place in the lower layers which enable them to dynamically adapt. Another major issue in the realization of networked wirelessly communicating cyber-physical systems, in general, and WSAN, in particular, is the lack of approaches that tackle the reliability, configurability and application awareness issues together. One could consider tackling these issues in isolation. However, the interplay between these issues create such challenges that make the application developers spend more time on meeting these challenges, and that too not in very optimal ways, than spending their time on solving the problems related to the application being developed. Starting from some fundamental concepts, general issues and problems in cyber-physical systems, this chapter discusses such issues like energy-efficiency, application and channel-awareness for networked wirelessly communicating cyber-physical systems. Additionally, the chapter describes a middleware approach called CEACH, which is an acronym for Configurable, Energy-efficient, Application- and Channel-aware Clustering based middleware service for cyber-physical systems. The state of-the art in the area of cyberphysical systems with a special focus on communication reliability, configurability, application- and channel-awareness is described in the chapter. The chapter also describes how these features have been considered in the CEACH approach. Important node level and network level characteristics and their significance vis-àvis the design of applications for cyber physical systems is also discussed. The issue of adaptively controlling the impact of these factors vis-à-vis the application demands and network conditions is also discussed. The chapter also includes a description of Fuzzy-CEACH which is an extension of CEACH middleware service and which uses fuzzy logic principles. The fuzzy descriptors used in different stages of Fuzzy-CEACH have also been described. The fuzzy inference engine used in the Fuzzy-CEACH cluster head election process is described in detail. The Rule-Bases used by fuzzy inference engine in different stages of Fuzzy-CEACH is also included to show an insightful description of the protocol. The chapter also discusses in detail the experimental results validating the authenticity of the presented concepts in the CEACH approach. The applicability of the CEACH middleware service in different application scenarios in the domain of cyberphysical systems is also discussed. The chapter concludes by shedding light on the Publish-Subscribe mechanisms in distributed event-based systems and showing how they can make use of the CEACH middleware to reliably communicate detected events to the event-consumers or the actuators if the WSAN is modeled as a distributed event-based system.
Data analytics tasks on large datasets are computationally intensive and often demand the compute power of cluster environments. Yet, data cleansing, preparation, dataset characterization and statistics or metrics computation steps are frequent. These are mostly performed ad hoc, in an explorative manner and mandate low response times. But, such steps are I/O intensive and typically very slow due to low data locality, inadequate interfaces and abstractions along the stack. These typically result in prohibitively expensive scans of the full dataset and transformations on interface boundaries.
In this paper, we examine R as analytical tool, managing large persistent datasets in Ceph, a wide-spread cluster file-system. We propose nativeNDP – a framework for Near Data Processing that pushes down primitive R tasks and executes them in-situ, directly within the storage device of a cluster-node. Across a range of data sizes, we show that nativeNDP is more than an order of magnitude faster than other pushdown alternatives.
The amount of image data has been rising exponentially over the last decades due to numerous trends like social networks, smartphones, automotive, biology, medicine and robotics. Traditionally, file systems are used as storage. Although they are easy to use and can handle large data volumes, they are suboptimal for efficient sequential image processing due to the limitation of data organisation on single images. Database systems and especially column-stores support more stuctured storage and access methods on the raw data level for entiere series.
In this paper we propose definitions of various layouts for an efficient storage of raw image data and metadata in a column store. These schemes are designed to improve the runtime behaviour of image processing operations. We present a tool called column-store Image Processing Toolbox (cIPT) allowing to easily combine the data layouts and operations for different image processing scenarios.
The experimental evaluation of a classification task on a real world image dataset indicates a performance increase of up to 15x on a column store compared to a traditional row-store (PostgreSQL) while the space consumption is reduced 7x. With these results cIPT provides the basis for a future mature database feature.