Refine
Document Type
- Conference Proceeding (3)
- Article (1)
Publisher
- Assoc. of Computing Machinery (4) (remove)
In this paper, we present a new approach for achieving robust performance of data structures making it easier to reuse the same design for different hardware generations but also for different workloads. To achieve robust performance, the main idea is to strictly separate the data structure design from the actual strategies to execute access operations and adjust the actual execution strategies by means of so-called configurations instead of hard-wiring the execution strategy into the data structure. In our evaluation we demonstrate the benefits of this configuration approach for individual data structures as well as complex OLTP workloads.
Massive data transfers in modern key/value stores resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, have yet to see widespread use.
In this paper we introduce nKV, which is a key/value store utilizing native computational storage and near-data processing. On the one hand, nKV can directly control the data and computation placement on the underlying storage hardware. On the other hand, nKV propagates the data formats and layouts to the storage device where, software and hardware parsers and accessors are implemented. Both allow NDP operations to execute in host-intervention-free manner, directly on physical addresses and thus better utilize the underlying hardware. Our performance evaluation is based on executing traditional KV operations (GET, SCAN) and on complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on real hardware – the COSMOS+ platform.
The tale of 1000 cores: an evaluation of concurrency control on real(ly) large multi-socket hardware
(2020)
In this paper, we set out the goal to revisit the results of “Starring into the Abyss [...] of Concurrency Control with [1000] Cores” and analyse in-memory DBMSs on today’s large hardware. Despite the original assumption of the authors, today we do not see single-socket CPUs with 1000 cores. Instead multi-socket hardware made its way into production data centres. Hence, we follow up on this prior work with an evaluation of the characteristics of concurrency control schemes on real production multi-socket hardware with 1568 cores. To our surprise, we made several interesting findings which we report on in this paper.
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.