Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become viable.
The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under NoFTL-KV and the COSMOS hardware platform.
In the present tutorial we perform a cross-cut analysis of database storage management from the perspective of modern storage technologies. We argue that neither the design of modern DBMS, nor the architecture of modern storage technologies are aligned with each other. Moreover, the majority of the systems rely on a complex multi-layer and compatibility oriented storage stack. The result is needlessly suboptimal DBMS performance, inefficient utilization, or significant write amplification due to outdated abstractions and interfaces. In the present tutorial we focus on the concept of native storage, which is storage operated without intermediate abstraction layers over an open native storage interface and is directly controlled by the DBMS.
In the present tutorial we perform a cross-cut analysis of database systems from the perspective of modern storage technology, namely Flash memory. We argue that neither the design of modern DBMS, nor the architecture of flash storage technologies are aligned with each other. The result is needlessly suboptimal DBMS performance and inefficient flash utilisation as well as low flash storage endurance and reliability. We showcase new DBMS approaches with improved algorithms and leaner architectures, designed to leverage the properties of modern storage technologies. We cover the area of transaction management and multi-versioning, putting a special emphasis on: (i) version organisation models and invalidation mechanisms in multi-versioning DBMS; (ii) Flash storage management especially on append-based storage in tuple granularity; (iii) Flash-friendly buffer management; as well as (iv) improvements in the searching and indexing models. Furthermore, we present our NoFTL approach to native Flash access that integrates parts of the flash-management functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. In addition, we cover the basics of building large Flash storage for DBMS and revisit some of the RAID techniques and principles.
In the present paper we demonstrate the novel technique to apply the recently proposed approach of In-Place Appends – overwrites on Flash without a prior erase operation. IPA can be applied selectively: only to DB-objects that have frequent and relatively small updates. To do so we couple IPA to the concept of NoFTL regions, allowing the DBA to place update-intensive DB-objects into special IPA-enabled regions. The decision about region configuration can be (semi-)automated by an advisor analyzing DB-log files in the background.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware. During the demonstration we allow the users to interact with the system and gain hands-on experience under different demonstration scenarios.