Refine
Document Type
- Conference Proceeding (27)
- Part of a Book (5)
- Article (1)
Publisher
- ACM (6)
- Assoc. of Computing Machinery (4)
- IEEE (4)
- Gesellschaft für Informatik (3)
- Springer (3)
- University of Konstanz, University Library (3)
- Springer International Publishing (2)
- ACM Association for Computing Machinery (1)
- Association for Computing Machinery (1)
- Open Proceedings.org, Univ. of Konstanz (1)
- OpenProceedings (1)
- Universität Trier (1)
An index in a Multi-Version DBMS (MV-DBMS) has to reflect different tuple versions of a single data item. Existing approaches follow the paradigm of logically separating the tuple version data from the data item, e.g. an index is only allowed to return at most one version of a single data item (while it may return multiple data items that match a search criteria). Hence to determine the valid (and therefore visible) tuple version of a data item, the MV-DBMS first fetches all tuple versions that match the search criteria and subsequently filters visible versions using visibility checks. This involves I/O storage accesses to tuple versions that do not have to be fetched. In this vision paper we present the Multi Version Index (MV-IDX) approach that allows index-only visibility checks which significantly reduce the amount of I/O storage accesses as well as the index maintenance overhead. The MV-IDX achieves significantly lower response times and higher transactional throughput on OLTP workloads.
The use of Wireless Sensor and Actuator Networks (WSAN) as an enabling technology for Cyber-Physical Systems has increased significantly in recent past. The challenges that arise in different application areas of Cyber- Physical Systems, in general, and in WSAN in particular, are getting the attention of academia and industry both. Since reliability issues for message delivery in wireless communication are of critical importance for certain safety related applications, it is one of the areas that has received significant focus in the research community. Additionally, the diverse needs of different applications put different demands on the lower layers in the protocol stack, thus necessitating such mechanisms in place in the lower layers which enable them to dynamically adapt. Another major issue in the realization of networked wirelessly communicating cyber-physical systems, in general, and WSAN, in particular, is the lack of approaches that tackle the reliability, configurability and application awareness issues together. One could consider tackling these issues in isolation. However, the interplay between these issues create such challenges that make the application developers spend more time on meeting these challenges, and that too not in very optimal ways, than spending their time on solving the problems related to the application being developed. Starting from some fundamental concepts, general issues and problems in cyber-physical systems, this chapter discusses such issues like energy-efficiency, application and channel-awareness for networked wirelessly communicating cyber-physical systems. Additionally, the chapter describes a middleware approach called CEACH, which is an acronym for Configurable, Energy-efficient, Application- and Channel-aware Clustering based middleware service for cyber-physical systems. The state of-the art in the area of cyberphysical systems with a special focus on communication reliability, configurability, application- and channel-awareness is described in the chapter. The chapter also describes how these features have been considered in the CEACH approach. Important node level and network level characteristics and their significance vis-àvis the design of applications for cyber physical systems is also discussed. The issue of adaptively controlling the impact of these factors vis-à-vis the application demands and network conditions is also discussed. The chapter also includes a description of Fuzzy-CEACH which is an extension of CEACH middleware service and which uses fuzzy logic principles. The fuzzy descriptors used in different stages of Fuzzy-CEACH have also been described. The fuzzy inference engine used in the Fuzzy-CEACH cluster head election process is described in detail. The Rule-Bases used by fuzzy inference engine in different stages of Fuzzy-CEACH is also included to show an insightful description of the protocol. The chapter also discusses in detail the experimental results validating the authenticity of the presented concepts in the CEACH approach. The applicability of the CEACH middleware service in different application scenarios in the domain of cyberphysical systems is also discussed. The chapter concludes by shedding light on the Publish-Subscribe mechanisms in distributed event-based systems and showing how they can make use of the CEACH middleware to reliably communicate detected events to the event-consumers or the actuators if the WSAN is modeled as a distributed event-based system.
Many future Services Oriented Architecture (SOA) systems may be pervasive SmartLife applications that provide real-time support for users in everyday tasks and situations. Development of such applications will be challenging, but in this position paper we argue that their ongoing maintenance may be even more so. Ontological modelling of the application may help to ease this burden, but maintainers need to understand a system at many levels, from a broad architectural perspective down to the internals of deployed components. Thus we will need consistent models that span the range of views, from business processes through system architecture to maintainable code. We provide an initial example of such a modelling approach and illustrate its application in a semantic browser to aid in software maintenance tasks.
Characteristics of modern computing and storage technologies fundamentally differ from traditional hardware. There is a need to optimally leverage their performance, endurance and energy consumption characteristics. Therefore, existing architectures and algorithms in modern high performance database management systems have to be redesigned and advanced. Multi Version Concurrency Control (MVCC) approaches in data-base management systems maintain multiple physically independent tuple versions. Snapshot isolation approaches enable high parallelism and concurrency in workloads with almost serializable consistency level. Modern hardware technologies benefit from multi-version approaches. Indexing multi-version data on modern hardware is still an open research area. In this paper, we provide a survey of popular multi-version indexing approaches and an extended scope of high performance single-version approaches. An optimal multi-version index structure brings look-up efficiency of tuple versions, which are visible to transactions, and effort on index maintenance in balance for different workloads on modern hardware technologies.
Database management systems (DBMS) are critical performance components in large scale applications under modern update intensive workloads. Additional access paths accelerate look-up performance in DBMS for frequently queried attributes, but the required maintenance slows down update performance. The ubiquitous B+ tree is a commonly used key-indexed access path that is able to support many required functionalities with logarithmic access time to requested records. Modern processing and storage technologies and their characteristics require reconsideration of matured indexing approaches for today's workloads. Partitioned B-trees (PBT) leverage characteristics of modern hardware technologies and complex memory hierarchies as well as high update rates and changes in workloads by maintaining partitions within one single B+-Tree. This paper includes an experimental evaluation of PBTs optimized write pattern and performance improvements. With PBT transactional throughput under TPC-C increases 30%; PBT results in beneficial sequential write patterns even in presence of updates and maintenance operations.
Real Time Charging (RTC) applications that reside in the telecommunications domain have the need for extremely fast database transactions. Today´s providers rely mostly on in-memory databases for this kind of information processing. A flexible and modular benchmark suite specifically designed for this domain provides a valuable framework to test the performance of different DB candidates. Besides a data and a load generator, the suite also includes decoupled database connectors and use case components for convenient customization and extension. Such easily produced test results can be used as guidance for choosing a subset of candidates for further tuning/testing and finally evaluating the database most suited to the chosen use cases. This is why our benchmark suite can be of value for choosing databases for RTC use cases.
In the present tutorial we perform a cross-cut analysis of database systems from the perspective of modern storage technology, namely Flash memory. We argue that neither the design of modern DBMS, nor the architecture of flash storage technologies are aligned with each other. The result is needlessly suboptimal DBMS performance and inefficient flash utilisation as well as low flash storage endurance and reliability. We showcase new DBMS approaches with improved algorithms and leaner architectures, designed to leverage the properties of modern storage technologies. We cover the area of transaction management and multi-versioning, putting a special emphasis on: (i) version organisation models and invalidation mechanisms in multi-versioning DBMS; (ii) Flash storage management especially on append-based storage in tuple granularity; (iii) Flash-friendly buffer management; as well as (iv) improvements in the searching and indexing models. Furthermore, we present our NoFTL approach to native Flash access that integrates parts of the flash-management functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. In addition, we cover the basics of building large Flash storage for DBMS and revisit some of the RAID techniques and principles.
Flash SSDs are omnipresent as database storage. HDD replacement is seamless since Flash SSDs implement the same legacy hardware and software interfaces to enable backward compatibility. Yet, the price paid is high as backward compatibility masks the native behaviour, incurs significant complexity and decreases I/O performance, making it non-robust and unpredictable. Flash SSDs are black-boxes. Although DBMS have ample mechanisms to control hardware directly and utilize the performance potential of Flash memory, the legacy interfaces and black-box architecture of Flash devices prevent them from doing so.
In this paper we demonstrate NoFTL, an approach that enables native Flash access and integrates parts of the Flashmanagement functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. NoFTL is implemented on real hardware based on the OpenSSD research platform. The contributions of this paper include: (i) a description of the NoFTL native Flash storage architecture; (ii) its integration in Shore-MT and (iii) performance evaluation of NoFTL on a real Flash SSD and on an on-line data-driven Flash emulator under TPCB, C,E and H workloads. The performance evaluation results indicate an improvement of at least 2.4x on real hardware over conventional Flash storage; as well as better utilisation of native Flash parallelism.
Nowadays almost every major company has a monitoring system and produces log data to analyse their systems. To perform analysation on the log data and to extract experience for future decisions it is important to transform and synchronize different time series. For synchronizing multiple time series several methods are provided so that they are leading to a synchronized uniform time series. This is achieved by using discretisation and approximation methodics. Furthermore the discretisation through ticks is demonstrated, as well as the respectivly illustrated results.
Rapidly growing data volumes push today's analytical systems close to the feasible processing limit. Massive parallelism is one possible solution to reduce the computational time of analytical algorithms. However, data transfer becomes a significant bottleneck since it blocks system resources moving data-to-code. Technological advances allow to economically place compute units close to storage and perform data processing operations close to data, minimizing data transfers and increasing scalability. Hence the principle of Near Data Processing (NDP) and the shift towards code-to-data. In the present paper we claim that the development of NDP-system architectures becomes an inevitable task in the future. Analytical DBMS like HPE Vertica have multiple points of impact with major advantages which are presented within this paper.
Asymmetric read/write storage technologies such as Flash are becoming
a dominant trend in modern database systems. They introduce
hardware characteristics and properties which are fundamentally
different from those of traditional storage technologies such
as HDDs.
Multi-Versioning Database Management Systems (MV-DBMSs)
and Log-based Storage Managers (LbSMs) are concepts that can
effectively address the properties of these storage technologies but
are designed for the characteristics of legacy hardware. A critical
component of MV-DBMSs is the invalidation model: commonly,
transactional timestamps are assigned to the old and the new version,
resulting in two independent (physical) update operations.
Those entail multiple random writes as well as in-place updates,
sub-optimal for new storage technologies both in terms of performance
and endurance. Traditional page-append LbSM approaches
alleviate random writes and immediate in-place updates, hence reducing
the negative impact of Flash read/write asymmetry. Nevertheless,
they entail significant mapping overhead, leading to write
amplification.
In this work we present an approach called Snapshot Isolation
Append Storage Chains (SIAS-Chains) that employs a combination
of multi-versioning, append storage management in tuple granularity
and novel singly-linked (chain-like) version organization.
SIAS-Chains features: simplified buffer management, multi-version
indexing and introduces read/write optimizations to data placement
on modern storage media. SIAS-Chains algorithmically avoids
small in-place updates, caused by in-place invalidation and converts
them into appends. Every modification operation is executed
as an append and recently inserted tuple versions are co-located.
Blockchains yield to new workloads in database management systems and K/V-stores. Distributed Ledger Technology (DLT) is a technique for managing transactions in ’trustless’ distributed systems. Yet, clients of nodes in blockchain networks are backed by ’trustworthy’ K/V-Stores, like LevelDB or RocksDB in Ethereum, which are based on Log-Structured Merge Trees (LSM Trees). However, LSM-Trees do not fully match the properties of blockchains and enterprise workloads.
In this paper, we claim that Partitioned B-Trees (PBT) fit the properties of this DLT: uniformly distributed hash keys, immutability, consensus, invalid blocks, unspent and off-chain transactions, reorganization and data state / version ordering in a distributed log-structure. PBT can locate records of newly inserted key-value pairs, as well as data of unspent transactions, in separate partitions in main memory. Once several blocks acquire consensus, PBTs evict a whole partition, which becomes immutable, to secondary storage. This behavior minimizes write amplification and enables a beneficial sequential write pattern on modern hardware. Furthermore, DLT implicate some type of log-based versioning. PBTs can serve as MV-store for data storage of logical blocks and indexing in multi-version concurrency control (MVCC) transaction processing.
Active storage
(2019)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
The amount of image data has been rising exponentially over the last decades due to numerous trends like social networks, smartphones, automotive, biology, medicine and robotics. Traditionally, file systems are used as storage. Although they are easy to use and can handle large data volumes, they are suboptimal for efficient sequential image processing due to the limitation of data organisation on single images. Database systems and especially column-stores support more stuctured storage and access methods on the raw data level for entiere series.
In this paper we propose definitions of various layouts for an efficient storage of raw image data and metadata in a column store. These schemes are designed to improve the runtime behaviour of image processing operations. We present a tool called column-store Image Processing Toolbox (cIPT) allowing to easily combine the data layouts and operations for different image processing scenarios.
The experimental evaluation of a classification task on a real world image dataset indicates a performance increase of up to 15x on a column store compared to a traditional row-store (PostgreSQL) while the space consumption is reduced 7x. With these results cIPT provides the basis for a future mature database feature.
In this paper we present our work in progress on revisiting traditional DBMS mechanisms to manage space on native Flash and how it is administered by the DBA. Our observations and initial results show that: the standard logical database structures can be used for physical organization of data on native Flash; at the same time higher DBMS performance is achieved without incurring extra DBA overhead. Initial experimental evaluation indicates a 20% increase in transactional throughput under TPC-C, by performing intelligent data placement on Flash, less erase operations and thus better Flash longevity.
In this paper we build on our research in data management on native Flash storage. In particular we demonstrate the advantages of intelligent data placement strategies. To effectively manage phsical Flash space and organize the data on it, we utilize novel storage structures such as regions and groups. These are coupled to common DBMS logical structures, thus require no extra overhead for the DBA. The experimental results indicate an improvement of up to 2x, which doubles the longevity of Flash SSD. During the demonstration the audience can experience the advantages of the proposed approach on real Flash hardware.
In the present paper we demonstrate a novel approach to handling small updates on Flash called In-Place Appends (IPA). It allows the DBMS to revisit the traditional write behavior on Flash. Instead of writing whole database pages upon an update in an out-of-place manner on Flash, we transform those small updates into update deltas and append them to a reserved area on the very same physical Flash page. In doing so we utilize the commonly ignored fact that under certain conditions Flash memories can support in-place updates to Flash pages without a preceding erase operation.
The approach was implemented under Shore-MT and evaluated on real hardware. Under standard update-intensive workloads we observed 67% less page invalidations resulting in 80% lower garbage collection overhead, which yields a 45% increase in transactional throughput, while doubling Flash longevity at the same time. The IPA outperforms In-Page Logging (IPL) by more than 50%.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware – the OpenSSD Flash research platform. During the demonstration we allow the users to interact with the system and gain hands on experience of its performance under different demonstration scenarios. These involve various workloads such as TPC-B, TPC-C or TATP.
In the present paper we demonstrate the novel technique to apply the recently proposed approach of In-Place Appends – overwrites on Flash without a prior erase operation. IPA can be applied selectively: only to DB-objects that have frequent and relatively small updates. To do so we couple IPA to the concept of NoFTL regions, allowing the DBA to place update-intensive DB-objects into special IPA-enabled regions. The decision about region configuration can be (semi-)automated by an advisor analyzing DB-log files in the background.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware. During the demonstration we allow the users to interact with the system and gain hands-on experience under different demonstration scenarios.
Under update intensive workloads (TPC, LinkBench) small updates dominate the write behavior, e.g. 70% of all updates change less than 10 bytes across all TPC OLTP workloads. These are typically performed as in-place updates and result in random writes in page-granularity, causing major write-overhead on Flash storage, a write amplification of several hundred times and lower device longevity.
In this paper we propose an approach that transforms those small in-place updates into small update deltas that are appended to the original page. We utilize the commonly ignored fact that modern Flash memories (SLC, MLC, 3D NAND) can handle appends to already programmed physical pages by using various low-level techniques such as ISPP to avoid expensive erases and page migrations. Furthermore, we extend the traditional NSM page-layout with a delta-record area that can absorb those small updates. We propose a scheme to control the write behavior as well as the space allocation and sizing of database pages.
The proposed approach has been implemented under Shore- MT and evaluated on real Flash hardware (OpenSSD) and a Flash emulator. Compared to In-Page Logging it performs up to 62% less reads and writes and up to 74% less erases on a range of workloads. The experimental evaluation indicates: (i) significant reduction of erase operations resulting in twice the longevity of Flash devices under update-intensive workloads; (ii) 15%-60% lower read/write I/O latencies; (iii) up to 45% higher transactional throughput; (iv) 2x to 3x reduction in overall write
amplification.
New storage technologies, such as Flash and Non- Volatile Memories, with fundamentally different properties are appearing. Leveraging their performance and endurance requires a redesign of existing architecture and algorithms in modern high performance databases. Multi-Version Concurrency Control (MVCC) approaches in database systems, maintain multiple timestamped versions of a tuple. Once a transaction reads a tuple the database system tracks and returns the respective version eliminating lock-requests. Hence under MVCC reads are never blocked, which leverages well the excellent read performance (high throughput, low latency) of new storage technologies. Upon tuple updates, however, established implementations of MVCC approaches (such as Snapshot Isolation) lead to multiple random writes – caused by (i) creation of the new and (ii) in-place invalidation of the old version – thus generating suboptimal access patterns for the new storage media. The combination of an append based storage manager operating with tuple granularity and snapshot isolation addresses asymmetry and in-place updates. In this paper, we highlight novel aspects of log-based storage, in multi-version database systems on new storage media. We claim that multi-versioning and append-based storage can be used to effectively address asymmetry and endurance. We identify multi-versioning as the approach to address dataplacement in complex memory hierarchies. We focus on: version handling, (physical) version placement, compression and collocation of tuple versions on Flash storage and in complex memory hierarchies. We identify possible read- and cacherelated optimizations.
We introduce IPA-IDX – an approach to handle index modifications modern storage technologies (NVM, Flash) as physical in-place appends, using simplified physiological log records. IPA-IDX provides similar performance and longevity advantages for indexes as basic IPA [5] does for tables. The selective application of IPA-IDX and basic IPA to certain regions and objects, lowers the GC overhead by over 60%, while keeping the total space overhead to 2%. The combined effect of IPA and IPA-IDX increases performance by 28%.
When forecasting sales figures, not only the sales history but also the future price of a product will influence the sales quantity. At first sight, multivariate time series seem to be the appropriate model for this task. Nontheless, in real life history is not always repeatable, i.e. in the case of sales history there is only one price for a product at a given time. This complicates the design of a multivariate time series. However, for some seasonal or perishable products the price is rather a function of the expiration date than of the sales history. This additional information can help to design a more accurate and causal time series model. The proposed solution uses an univariate time series model but takes the price of a product as a parameter that influences systematically the prediction. The price influence is computed based on historical sales data using correlation analysis and adjustable price ranges to identify products with comparable history. Compared to other techniques this novel approach is easy to compute and allows to preset the price parameter for predictions and simulations. Tests with data from the Data Mining Cup 2012 demonstrate better results than established sophisticated time series methods.
In the present tutorial we perform a cross-cut analysis of database storage management from the perspective of modern storage technologies. We argue that neither the design of modern DBMS, nor the architecture of modern storage technologies are aligned with each other. Moreover, the majority of the systems rely on a complex multi-layer and compatibility oriented storage stack. The result is needlessly suboptimal DBMS performance, inefficient utilization, or significant write amplification due to outdated abstractions and interfaces. In the present tutorial we focus on the concept of native storage, which is storage operated without intermediate abstraction layers over an open native storage interface and is directly controlled by the DBMS.
Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity.
In the present paper we present NoFTL KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL KV reduces write-amplification 19x and improves storage longevity by imately the same factor.
Data analytics tasks on large datasets are computationally intensive and often demand the compute power of cluster environments. Yet, data cleansing, preparation, dataset characterization and statistics or metrics computation steps are frequent. These are mostly performed ad hoc, in an explorative manner and mandate low response times. But, such steps are I/O intensive and typically very slow due to low data locality, inadequate interfaces and abstractions along the stack. These typically result in prohibitively expensive scans of the full dataset and transformations on interface boundaries.
In this paper, we examine R as analytical tool, managing large persistent datasets in Ceph, a wide-spread cluster file-system. We propose nativeNDP – a framework for Near Data Processing that pushes down primitive R tasks and executes them in-situ, directly within the storage device of a cluster-node. Across a range of data sizes, we show that nativeNDP is more than an order of magnitude faster than other pushdown alternatives.
Database Management Systems (DBMS) need to handle large updatable datasets in on-line transaction processing (OLTP) workloads. Most modern DBMS provide snapshots of data in multi-version concurrency control (MVCC) transaction management scheme. Each transaction operates on a snapshot of the database, which is calculated from a set of tuple versions. High parallelism and resource-efficient append-only data placement on secondary storage is enabled. One major issue in indexing tuple versions on modern hardware technologies is the high write amplification for tree-indexes.
Partitioned B-Trees (PBT) [5] is based on the structure of the ubiquitous B+ Tree [8]. They achieve a near optimal write amplification and beneficial sequential writes on secondary storage. Yet they have not been implemented in a MVCC enabled DBMS to date.
In this paper we present the implementation of PBTs in PostgreSQL extended with SIAS. Compared to PostgreSQL’s B+–Trees PBTs have 50% better transaction throughput under TPC-C and a 30% improvement to standard PostgreSQL with Heap-Only Tuples.
In this paper, we present a new approach for achieving robust performance of data structures making it easier to reuse the same design for different hardware generations but also for different workloads. To achieve robust performance, the main idea is to strictly separate the data structure design from the actual strategies to execute access operations and adjust the actual execution strategies by means of so-called configurations instead of hard-wiring the execution strategy into the data structure. In our evaluation we demonstrate the benefits of this configuration approach for individual data structures as well as complex OLTP workloads.
Modern mixed (HTAP)workloads execute fast update-transactions and long running analytical queries on the same dataset and system. In multi-version (MVCC) systems, such workloads result in many short-lived versions and long version-chains as well as in increased and frequent maintenance overhead.
Consequently, the index pressure increases significantly. Firstly, the frequent modifications cause frequent creation of new versions, yielding a surge in index maintenance overhead. Secondly and more importantly, index-scans incur extra I/O overhead to determine, which of the resulting tuple versions are visible to the executing transaction (visibility-check) as current designs only store version/timestamp information in the base table – not in the index. Such index-only visibility-check is critical for HTAP workloads on large datasets.
In this paper we propose the Multi Version Partitioned B-Tree (MV-PBT) as a version-aware index structure, supporting index-only visibility checks and flash-friendly I/O patterns. The experimental evaluation indicates a 2x improvement for analytical queries and 15% higher transactional throughput under HTAP workloads. MV-PBT offers 40% higher tx. throughput compared to WiredTiger’s LSM-Tree implementation under YCSB.
Massive data transfers in modern key/value stores resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, have yet to see widespread use.
In this paper we introduce nKV, which is a key/value store utilizing native computational storage and near-data processing. On the one hand, nKV can directly control the data and computation placement on the underlying storage hardware. On the other hand, nKV propagates the data formats and layouts to the storage device where, software and hardware parsers and accessors are implemented. Both allow NDP operations to execute in host-intervention-free manner, directly on physical addresses and thus better utilize the underlying hardware. Our performance evaluation is based on executing traditional KV operations (GET, SCAN) and on complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on real hardware – the COSMOS+ platform.
The tale of 1000 cores: an evaluation of concurrency control on real(ly) large multi-socket hardware
(2020)
In this paper, we set out the goal to revisit the results of “Starring into the Abyss [...] of Concurrency Control with [1000] Cores” and analyse in-memory DBMSs on today’s large hardware. Despite the original assumption of the authors, today we do not see single-socket CPUs with 1000 cores. Instead multi-socket hardware made its way into production data centres. Hence, we follow up on this prior work with an evaluation of the characteristics of concurrency control schemes on real production multi-socket hardware with 1568 cores. To our surprise, we made several interesting findings which we report on in this paper.
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become viable.
The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under NoFTL-KV and the COSMOS hardware platform.
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.