Refine
Document Type
- Journal article (3)
Language
- English (3)
Is part of the Bibliography
- yes (3)
Institute
- Life Sciences (3)
Publisher
- Elsevier (2)
- Tech Science Press (1)
Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high residual curing potential). Partially substituting phenol in PF with bio-based phenolic co-reagents like lignin modifies the physicochemical properties of the resulting resin. In this study, phenol-formaldehyde formulations were synthesized where either 30% or 50% (in weight) of the phenol monomer were substituted by either sodium lignosulfonate or Kraft lignin. The effect of modifying the lignin material by phenolation before incorporation into the resin synthesis was also investigated. The resins so obtained were characterized by Fourier Transform Infra-Red (FTIR) spectroscopy, Size Exclusion Chromatography (SEC), Differential Scanning Calorimetry (DSC), rheology, and measurements of contact angle and surface tension using the Wilhelmy plate method and drop shape analysis.
Impact of phenolic resin preparation on its properties and its penetration behavior in Kraft paper
(2018)
The core of decorative laminates is generally made of stacked Kraft paper sheets impregnated with a phenolic resin. As the impregnation process in industry is relatively fast, new methods need to be developed to characterize it for different paper-resin systems. Several phenolic resins were synthesized with the same Phenol:Formaldehyde ratio of 1:1.8 and characterized by Fourier Transform Infrared Spectrometry (FTIR) as well as Size-Exclusion Chromatography (SEC). In addition, their viscosities and surface tensions when diluted in methanol to 45% of solid content were measured. The capacity of each resin to penetrate a Kraft paper sheet was characterized using a new method, which measures the conductivities induced by the liquid resin crossing the paper substrate. With this method, crossing times could be measured with a good accuracy. Surprisingly, the results showed that the penetration time of the resin samples is not correlated to the viscosity values, but rather to the surface tension characteristics and the chemical characteristics of paper. Furthermore, some resins had a higher swelling effect on the fibers that delayed the crossing of the liquid through the paper.
Properties data of phenolic resins synthetized for the impregnation of saturating Kraft paper
(2018)
The quality of decorative laminates boards depends on the impregnation process of Kraft papers with a phenolic resin,which constitute the raw materials for the manufacture of the cores of such boards.In the laminates industries,the properties of resins are adapted via their syntheses,usually by mixing phenol and formaldehyde in a batch,where additives,temperature and stirring parameters can be controlled. Therefore, many possibilities of preparation and phenolic resins exist, that leads to different combinations of physico chemical properties. In this article, the properties data of eight phenolic resins synthetized with different parameters of pH and reaction times at 60 °C and 90 °C are presented: the losses of pH after synthesis and the dynamic viscosities measured after synthesis and one the solid content is adjusted to 45%w/w in methanol. Data aquired by Differential Scanning Calorimetry (DSC) of the resins and Inverse Gas Chromatography (IGC) of cured solids are given as well.