Refine
Year of publication
- 2021 (2)
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Life Sciences (2)
Characterization of brain tumours requires neuropathological expertise and is generally performed by histological evaluation and molecular analysis. One emerging technique to assist pathologists in future tumour diagnostics is multimodal optical spectroscopy. In the current clinical routine, tissue preprocessing with formalin is widely established and suitable for spectroscopic investigations since degradation processes impede the measurement of native tissue. However, formalin fixation results in alterations of the tissue chemistry and morphology for example by protein cross-linking. As optical spectroscopy is sensitive to these variations, we evaluate the effects of formalin fixation on multimodal brain tumour data in this proof-of-concept study. Nonfixed and formalin-fixed cross sections of different common human brain tumours were subjected to analysis of chemical variations using ultraviolet and Fourier-transform infrared microspectroscopy. Morphological changes were assessed by elastic light scattering microspectroscopy in the visible wavelength range. Data were analysed with multivariate data analysis and compared with histopathology. Tissue type classifications deduced by optical spectroscopy are highly comparable and independent from the preparation and the fixation protocol. However, formalin fixation leads to slightly better classification models due to improved stability of the tissue. As a consequence, spectroscopic methods represent an appropriate additional contrast for chemical and morphological information in neuropathological diagnosis and should be investigated to a greater extent. Furthermore, they can be included in the clinical workflow even after formalin fixation.
The early detection of head and neck cancer is a prolonged challenging task. It requires a precise and accurate identification of tissue alterations as well as a distinct discrimination of cancerous from healthy tissue areas. A novel approach for this purpose uses microspectroscopic techniques with special focus on hyperspectral imaging (HSI) methods. Our proof-of-principle study presents the implementation and application of darkfield elastic light scattering spectroscopy (DF ELSS) as a non-destructive, high-resolution, and fast imaging modality to distinguish lingual healthy from altered tissue regions in a mouse model. The main aspect of our study deals with the comparison of two varying HSI detection principles, which are a point-by-point and line scanning imaging, and whether one might be more appropriate in differentiating several tissue types. Statistical models are formed by deploying a principal component analysis (PCA) with the Bayesian discriminant analysis (DA) on the elastic light scattering (ELS) spectra. Overall accuracy, sensitivity, and precision values of 98% are achieved for both models whereas the overall specificity results in 99%. An additional classification of model-unknown ELS spectra is performed. The predictions are verified with histopathological evaluations of identical HE-stained tissue areas to prove the model’s capability of tissue distinction. In the context of our proof-of-principle study, we assess the Pushbroom PCA-DA model to be more suitable for tissue type differentiations and thus tissue classification. In addition to the HE-examination in head and neck cancer diagnosis, the usage of HSI-based statistical models might be conceivable in a daily clinical routine.