Refine
Document Type
- Conference proceeding (35)
- Journal article (7)
- Book chapter (3)
- Book (2)
Is part of the Bibliography
- yes (47)
Institute
- Technik (47)
Publisher
- IEEE (17)
- Hochschule Ulm (5)
- ACM (4)
- Springer (4)
- VDE Verlag GmbH (3)
- Arbeitsgemeinschaft Simulation (ASIM) (2)
- VDE-Verlag (2)
- Cadence Design Systems (1)
- Elsevier (1)
- Fachhochschule (1)
Due to the lack of sophisticated component libraries for microelectromechanical systems (MEMS), highly optimized MEMS sensors are currently designed using a polygon driven design flow. The advantage of this design flow is its accurate mechanical simulation, but it lacks a method for an efficient and accurate electrostatic analysis of parasitic effects of MEMS. In order to close this gap in the polygon-driven design flow, we present a customized electrostatic analysis flow for such MEMS devices. Our flow features a 2.5D fabrication-process simulation, which simulates the three typical MEMS fabrication steps (namely deposition of materials including topography, deep reactive-ion etching, and the release etch by vapor-phase etching) very fast and on an acceptable abstraction level. Our new 2.5D fabrication-process simulation can be combined with commercial field-solvers such as they are commonly used in the design of integrated circuits. The new process simulation enables a faster but nevertheless satisfactory analysis of the electrostatic parasitic effects, and hence simplifies the electrical optimization of MEMS.
Nowadays, the demand for a MEMS development/design kit (MDK) is even more in focus than ever before. In order to achieve a high quality and cost effectiveness in the development process for automotive and consumer applications, an advanced design flow for the MEMS (micro electro mechanical systems) element is urgently required. In this paper, such a development methodology and flow for parasitic extraction of active semiconductor devices is presented. The methodology considers geometrical extraction and links the electrically active pn junctions to SPICE standard library models and subsequently extracts the netlist. An example for a typical pressure sensor is presented and discussed. Finally, the results of the parasitic extraction are compared with fabricated devices in terms of accuracy and capability.
Anders als Digital-ICs, die hochautomatisiert entworfen werden können, ist der Entwurf analoger ICs bis heute Handarbeit. Übliche auf Optimierung basierende Automatisierungsverfahren scheitern. Die Ursachen wurden jetzt in einem Forschungsprojekt untersucht, um neue Ansätze zur Entwurfsautomatisierung analoger ICs abzuleiten.
In this paper, we address the novel EDP (Expert Design Plan) principle for procedural design automation of analog integrated circuits, which captures the knowledge-based design strategy of human circuit designers in an executable script, making it reusable. We present the EDP Player, which enables the creation and execution of EDPs for arbitrary circuits in the Cadence® Virtuoso® Design Environment. The tool provides a generic version of an instruction set, called EDPL (EDPLanguage), enabling emulation of a typical manual analog sizing flow. To automate the design of a Miller Operational Amplifier and to create variants of a Smart Power IC, several EDPs were implemented using this tool. Employing these EDPs leads to a strong reduction of design time without compromising design quality or reliability.
This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication.
This paper introduces a novel placement methodology for a common-centroid (CC) pattern generator. It can be applied to various integrated circuit (IC) elements, such as transistors, capacitors, diodes, and resistors. The proposed method consists of a constructive algorithm which generates an initial, close to the optimum, solution, and an iterative algorithm which is used subsequently, if the output of constructive algorithm does not satisfy the desired criteria. The outcome of this work is an automatic CC placement algorithm for IC element arrays. Additionally, the paper presents a method for the CC arrangement evaluation. It allows for evaluating the quality of an array, and a comparison of different placement methods.
A new method for the analysis of movement dependent parasitics in full custom designed MEMS sensors
(2017)
Due to the lack of sophisticated microelectromechanical systems (MEMS) component libraries, highly optimized MEMS sensors are currently designed using a polygon driven design flow. The strength of this design flow is the accurate mechanical simulation of the polygons by finite element (FE) modal analysis. The result of the FE-modal analysis is included in the system model together with the data of the (mechanical) static electrostatic analysis. However, the system model lacks the dynamic parasitic electrostatic effects, arising from the electric coupling between the wiring and the moving structures. In order to include these effects in the system model, we present a method which enables the quasi dynamic parasitic extraction with respect to in-plane movements of the sensor structures. The method is embedded in the polygon driven MEMS design flow using standard EDA tools. In order to take the influences of the fabrication process into account, such as etching process variations, the method combines the FE-modal analysis and the fabrication process simulation data. This enables the analysis of dynamic changing electrostatic parasitic effects with respect to movements of the mechanical structures. Additionally, the result can be included into the system model allowing the simulation of positive feedback of the electrostatic parasitic effects to the mechanical structures.
We present a new methodology for automatic selection and sizing of analog circuits demonstrated on the OTA circuit class. The methodology consists of two steps: a generic topology selection method supported by a “part-sizing” process and subsequent final sizing. The circuit topologies provided by a reuse library are classified in a topology tree. The appropriate topology is selected by traversing the topology tree starting at the root node. The decision at each node is gained from the result of the part-sizing, which is in fact a node-specific set of simulations. The final sizing is a simulation-based optimization. We significantly reduce the overall simulation effort compared to a classical simulation-based optimization by combining the topology selection with the part-sizing process in the selection loop. The result is an interactive user friendly system, which eases the analog designer’s work significantly when compared to typical industrial practice in analog circuit design. The topology selection method and sizing process are implemented as a tool into a typical analog design environment. The design productivity improvement achievable by our method is shown by a comparison to other design automation approaches.
Layout generators, commonly denoted as PCells (parameterized cells), play an important role in the layout design of analog ICs (integrated circuits). PCells can automatically create parts of a layout, whose properties are controlled by the PCell parameters. Any layout, whether hand-crafted or automatically generated, has to be verified against design rules using a DRC (design rule check) in order to assure proper functionality and producibility. Due to the growing complexity of today’s PCells it would be beneficial if a PCell itself could be ensured to produce DRC clean layouts for any allowed parameter values, i.e. a formal verification of the PCell’s code rather than checking all possible instances of the PCell. In this paper we demonstrate the feasibility of such a formal PCell verification for a simple NMOS transistor PCell. The set from which the parameter values can be chosen was found during the verification process.
Electromigration (EM) is becoming a progressively severe reliability challenge due to increased interconnect current densities. A shift from traditional (post-layout) EM verification to robust (pro-active) EM aware design - where the circuit layout is designed with individual EM-robust solutions - is urgently needed. This tutorial will give an overview of EM and its effects on the reliability of present and future integrated circuits (ICs). We introduce the physical EM process and present its specific characteristics that can be affected during physical design. Examples of EM countermeasures which are applied in today’s commercial design flows are presented. We show how to improve the EM-robustness of metallization patterns and we also consider mission proiles to obtain application-oriented current density limits. The increasing interaction of EM with thermal migration is investigated as well. We conclude with a discussion of application examples to shift from the current post layout EM verification towards an EM aware physical design process. Its methodologies, such as EM-aware routing, increase the EM-robustness of the layout with the overall goal of reducing the negative impact of EM on the circuit’s reliability.