Refine
Document Type
- Conference proceeding (35)
- Journal article (6)
- Book chapter (3)
- Book (1)
Is part of the Bibliography
- yes (45)
Institute
- Technik (45)
Publisher
- IEEE (17)
- Hochschule Ulm (5)
- ACM (4)
- Springer (3)
- VDE Verlag GmbH (3)
- Arbeitsgemeinschaft Simulation (ASIM) (2)
- Berlin (1)
- EMEA (1)
- Elsevier Science (1)
- Fachhochschule (1)
There is still a great reliance on human expert knowledge during the analog integrated circuit sizing design phase due to its complexity and scale, with the result that there is a very low level of automation associated with it. Current research shows that reinforcement learning is a promising approach for addressing this issue. Similarly, it has been shown that the convergence of conventional optimization approaches can be improved by transforming the design space from the geometrical domain into the electrical domain. Here, this design space transformation is employed as an alternative action space for deep reinforcement learning agents. The presented approach is based entirely on reinforcement learning, whereby agents are trained in the craft of analog circuit sizing without explicit expert guidance. After training and evaluating agents on circuits of varying complexity, their behavior when confronted with a different technology, is examined, showing the applicability, feasibility as well as transferability of this approach.
Equations for fast and exact calculation of a simple model for heat transfer from a bond wire to a cylindrical finite mold package including nonideal heat transfer from wire to mold are presented. These allow for a characterization of an arbitrary mold/bond wire combination. The real mold geometry is approximated using the mold model cylinder radius and the thermal contact conductance of the mold/bond wire interface. For changes in bond and mold material, wire length, diameter, and current transient profiles, the resulting temperature transients can then be predicted. As the method is based on numerical integration of differential equations, arbitrary pulse shapes, which are industrially relevant, can be calculated. Very high thermal contact conductance values (above 40 000 W/m2K heat transfer) have been detected in real package/bond systems. The method was validated by successful comparison with finite element method simulations and alternative calculation methods and measurements.
While digital IC design is highly automated, analog circuits are still handcrafted in a time-consuming, manual fashion today. This paper introduces a novel Parameterized Circuit Description Scheme (PCDS) for the development of procedural analog schematic generators as parameterized circuits. Circuit designers themselves can use PCDS to create circuit automatisms which capture valuable expert knowledge, offer full topological flexibility, and enhance the re-use of well-established topologies. The generic PCDS concept has been successfully implemented and employed to create parameterized circuits for a broad range of use cases. The achieved results demonstrate the efficiency of our PCDS approach and the potential of parameterized circuits to increase automation in circuit design, also to benefit physical design by promoting the common schematic-driven-layout flow, and to enhance the applicability of circuit synthesis approaches.
Eine neue Methode zur Berechnung von Temperaturen in Bonddrähten umgeben von einem endlichen Mold wird vorgestellt. Sie ist schneller als die übliche Finite Elemente-Methode (FEM), während sie vergleichbare Resultate produziert. Für manche Parameter funktioniert unsere Methode, während die FEM-Methode versagt. Der Algorithmus ist im sogenannten Bondrechner implementiert, der eine leicht zu benutzende Oberfläche für Designer von mikroelektronischen Systemen bereitstellt. Seine Anwendung hat das Potential, die Zuverlässigkeit von Bonddrähten zu verbessern. Ein nichtidealer Parameter für den Wärmetransfer vom Bonddraht zum Mold-Package wurde ebenfalls berücksichtigt. Dieser Parameter ändert sich wahrscheinlich unter Alterseinflüssen und ist daher sehr wichtig für Zuverlässigkeits-Schätzungen. In unserer Methode wird die Wechselwirkung von Nachbardrähten ebenfalls berücksichtigt. Diese wird immer wichtiger, weil der Durchmesser und der wechselseitige Abstand der Bonddrähte sich verringert, wegen der fortschreitenden Miniaturisierung der Chip-Verpackungen. Unser Programm kann ebenfalls Temperaturen für transiente Ströme berechnen und den Strom berechnen, der zu einer gegebenen Maximaltemperatur gehört.
Despite 30 years of Electronic Design Automation, analog IC layouts are still handcrafted in a laborious fashion today due to the complex challenge of considering all relevant design constraints. This paper presents Self-organized Wiring and Arrangement of Responsive Modules (SWARM), a novel approach addressing the problem with a multi-agent system: autonomous layout modules interact with each other to evoke the emergence of overall compact arrangements that fit within a given layout zone. SWARM´s unique advantage over conventional optimization-based and procedural approaches is its ability to consider crucial design constraints both explicitly and implicitly. Several given examples show that by inducing a synergistic flow of self-organization, remarkable layout results can emerge from SWARM’s decentralized decision-making model.
Optimization-based analog layout automation does not yet find evident acceptance in the industry due to the complexity of the design problem. This paper presents a Self-organized Wiring and Arrangement of Responsive Modules (SWARM), able to consider crucial design constraints both implicitly and explicitly. The flexibility of algorithmic methods and the expert knowledge captured in PCells combine into a flow of supervised module interaction. This novel approach targets the creation of constraint-compliant layout blocks which fit into a specified zone. Provoking a synergetic self-organization, even optimal layout solutions can emerge from the interaction. Various examples depict the power of that new concept and the potential for future developments.
Der Entwurf analoger integrierter Schaltkreise ist bis heute durch einen weitgehend manuellen Entwurfsstil mit anschließender Verifikation gekennzeichnet. Das Backend dieses Prozesses bildet der Layoutentwurf, der mit der SDL-Methode (schematic driven layout) durchgeführt und mit den Verifikationsschritten DRC und LVS abgeschlossen wird. Als Ziel wird i.a. in Analogie zu den im Digitalbereich existierenden Lösungen eine vollautomatische Layoutsynthese auch für Analogschaltungen angestrebt. Die hier vorgeschlagene neue Designmethodik hat nicht diese vielfach geforderte Layoutsynthese im Analogbereich zum Inhalt. Sie stellt vielmehr einen realistischeren - und aus Sicht des Autors vor allem notwendigen - Zwischenschritt dar. Die Kernaussage besteht darin, dass zunächst eine Methode bereitzustellen ist, bei der alle die Schaltungsfunktion beeinflussenden Randbedingungen (constraints) rechnergestützt prüfbar sein müssen. Erst auf dieser Basis wird es gelingen, in einem weiteren Schritt analoges Layout zu synthetisieren. Diese These wird aus einer Betrachtung der historischen Entwicklung der EDA-Werkzeuge hergeleitet. Die Extrapolation dieser Historie lässt eine Wegskizze für einen neuen "constraint-driven" Designflow erkennen, dessen Hauptvorteil in einer rechnergestützten Absicherung der Schaltungsfunktion besteht. Weitere mögliche neue Merkmale eines solchen Designflows werden diskutiert: Abkehr von den klassischen sequentiellen Designschritten wie Platzierung und Routing hin zu einer "kontinuierlichen" Layoutentstehung und neuartige Chancen für eine wesentlich verbesserte Wiederverwendbarkeit (reuse) von Layoutergebnissen durch die Nutzung höherer Abstraktionsebenen.
In contrast to IC design, MEMS design still lacks sophisticated component libraries. Therefore, the physical design of MEMS sensors is mostly done by simply drawing polygons. Hence, the sensor structure is only given as plain graphic data which hinders the identification and investigation of topology elements such as spring, anchor, mass and electrodes. In order to solve this problem, we present a rule-based recognition algorithm which identifies the architecture and the topology elements of a MEMS sensor. In addition to graphic data, the algorithm makes use of only a few marking layers, as well as net and technology information. Our approach enables RC-extraction with commercial field solvers and a subsequent synthesis of the sensor circuit. The mapping of the extracted RC-values to the topology elements of the sensor enables a detailed analysis and optimization of actual MEMS sensors.
A generic, knowledge-based method for automatic topology selection of analog circuits in a predefined analog reuse library is presented in this paper on the OTA (Operational Transconductance Amplifier) example. Analog circuits of a given circuit class are classified in a topology tree, where each node represents a specific topology. Child nodes evolve from their parent nodes by an enhancement of the parent node’s topological structure. Topology selection is performed by a depth first-search in the topology tree starting at the root node, thus checking topologies of increasing complexity. The decisions at each node are based on solving equations or – if this is not possible – on simulations. The search ends at the first (and thus the simplest) topology which can meet the specification after an adequate circuit sizing. The advantages of the generic, tree based topology selection method presented in this paper are shown in comparison to a pool selection method and to heuristic approaches. The selection is based on an accomplished chip investigation.
This paper presents a toolbox in Matlab/Octave for procedural design of analog integrated circuits. The toolbox contains all native functions required by analog designers (namely, schematic-generation, simulation setup and execution, integrated look-up tables and functions for design space exploration) to capture an entire design strategy in an executable script. This script - which we call an Expert Design Plan (EDP) - is capable of executing an analog circuit design fully automatically. The toolbox is integrated in an existing design flow. A bandgap reference voltage circuit is designed with this tool in less than 15 min.