Refine
Document Type
- Conference proceeding (12)
- Patent / Standard / Guidelines (5)
- Journal article (3)
- Book chapter (1)
Is part of the Bibliography
- yes (21)
Institute
- Technik (21)
Publisher
A device including a first and second monitoring unit, the first monitoring unit detecting a first voltage potential and the second monitoring unit detecting a second voltage potential, the monitoring units comparing the first voltage potential and the second voltage potential to the value of the supply voltage and activate a control unit as a function of the comparisons, the control unit determining a switching point in time of a second power transistor, and an arrangement being present which generates current when the second power transistor is being switched on, the current changing the first voltage potential, and the control unit activates a first power transistor when the first voltage potential has the same value as the supply voltage, so that the first power transistor is de-energized.
The presented wide-Vin step-down converter introduces a parallel-resonant converter (PRC), comprising an integrated 5-bit capacitor array and a 300 nH resonant coil, placed in parallel to a conventional buck converter. Unlike conventional resonant concepts, the implemented soft-switching control eliminates input voltage dependent losses over a wide operating range. This ensures high efficiency across a wide range of Vin= 12-48V, 100-500mA load and 5V output at up to 15MHz switching frequency. The peak efficiency of the converter is 76.3 %. Thanks to the low output current ripple, the output capacitor can be as small as 50 nF, while the inductor tolerates a larger ESR, resulting in small component size. The proposed PRC architecture is also suitable for future power electronics applications using fast-switching GaN devices.
This paper presents a wide-Vin step-down parallel-resonant converter (PRC), comprising an integrated 5-bit capacitor array and a 300-nH resonant coil, placed in parallel to a conventional buck converter. Soft-switching resonant converters are beneficial for high-Vin multi-MHz converters to reduce dominant switching losses, enabling higher switching frequencies. The output filter inductor is optimized based on an empirical study of available inductors. The study shows that faster switching significantly reduces not only the inductor value but also volume, price, and even the inductor losses. In addition, unlike conventional resonant concepts, soft-switching control as part of the proposed PRC eliminates input voltage-dependent losses over a wide operating range, resulting in 76.3% peak efficiency. At Vin = 48 V, a loss reduction of 35% is achieved compared with the conventional buck converter. Adjusting an integrated capacitor array, and selecting the number of oscillation periods, keeps the switching frequency within a narrow range. This ensures high efficiency across a wide range of Vin = 12–48 V, 100–500-mA load, and 5-V output at up to 25-MHz switching frequency. Thanks to the low output current ripple, the output capacitor can be as small
as 50 nF.
The increasing slew rate of modern power switches can increase the efficiency and reduce the size of power electronic applications. This requires a fast and robust signal transmission to the gate driver of the high-side switch. This work proposes a galvanically isolated capacitive signal transmission circuit to increase common mode transient immunity (CMTI). An additional signal path is introduced to significantly improve the transmission robustness for small duty cycles to assure a safe turn-off of the power switch. To limit the input voltage range at the comparator on the secondary side during fast high-side transitions, a clamping structure is implemented. A comparison between a conventional and the proposed signal transmission is performed using transistor level simulations. A propagation delay of about 2 ns over a wide range of voltage transients of up to 300V/ns at input voltages up to 600V is achieved.
Die vorliegende Erfindung betrifft ein Verfahren zur Regelung einer Totzeit in einem Synchronwandler (100), in welchem ein zyklisches Schalten eines Steuerschalters (2) und eines Synchronschalters (3) erfolgen, wobei der Steuerschalter (2) mittels eines ersten Schaltsignals (S1) und der Synchronschalter (3) mittels eines zweiten Schaltsignals (S2) geschaltet werden. Das Verfahren umfasst ein Erfassen und Vorhalten eines Spannungswertes, welcher eine Spannung (VSW) über den Synchronschalter (3) zu einem bestimmten Zeitpunkt beschreibt, und ein Anpassen des ersten und/oder zweiten Schaltsignals (S1, S2) für einen folgenden Zyklus basierend auf dem vorgehaltenen Spannungswert.
This article covers the design of highly integrated gate drivers and level shifters for high-speed, high power efficiency and dv/dt robustness with focus on automotive applications. With the introduction of the 48 V board net in addition to the conventional 12 V battery, there is an increasing need for fast switching integrated gate drivers in the voltage range of 50 V and above. State-of-the-art drivers are able to switch 50 V in less than 5 ns. The high-voltage electrical drive train demands for galvanic isolated and highly integrated gate drivers. A gate driver with bidirectional signal transmission with a 1 MBit/s amplitude modulation, 10/20 MHz frequency modulation and power transfer over one single transformer will be discussed. The concept of high-voltage charge storing enables an area-efficient fully integrated bootstrapping supply with 70 % less area consumption. EMC is a major concern in automotive. Gate drivers with slope control optimize EMC while maintaining good switching efficiency. A current mode gate driver, which can change its drive current within 10 ns, results in 20 dBuV lower emissions between 7 and 60 MHz and 52 % lower switching loss compared to a conventional constant current gate driver.
An integrated synchronous buck converter with a high resolution dead time control for input voltages up to 48V and 10MHz switching frequency is presented. The benefit of an enhanced dead time control at light loads to enable zero voltage switching at both the high-side and low-side switch at low output load is studied. This way, compact multi-MHz DCDC converters can be implemented at high efficiency over a wide load current range. The concept also eliminates body diode forward conduction losses and minimizes reverse recovery losses. A dead time resolution of 125 ps is realized by an 8-bit differential delay chain. A further efficiency enhancement by soft switching at the high-side switch at light load is achieved with a voltage boost of the switching node by dead time control in forced continuous conduction mode. The monolithic converter is implemented in an 180nm high-voltage BiCMOS technology. At V IN = 48V, V OUT = 5V, 50mA load, 10MHz switching frequency and 500 nH output inductance, the efficiency is measured to be increased by 14.4% compared to a conventional predictive dead time control. A peak efficiency of 80.9% is achieved at 12V input.
A highly integrated synchronous buck converter with a predictive dead time control for input voltages >18 V with 10 MHz switching frequency is presented. A high resolution dead time of ˜125 ps allows to reduce dead time dependent losses without requiring body diode conduction to evaluate the dead time. High resolution is achieved by frequency compensated sampling of the switching node and by an 8 bit differential delay chain. Dead time parameters are derived in a comprehensive study of dead time depended losses. This way, the efficiency of fast switching DC-DC converters can be optimized by eliminating the body diode forward conduction losses, minimizing reverse recovery losses and by achieving zero voltage switching. High-speed circuit blocks for fast switching operation are presented including level shifter, gate driver, PWM generator. The converter has been implemented in a 180 nm high-voltage BiCMOS technology.