Refine
Document Type
- Conference proceeding (3)
- Journal article (1)
Language
- English (4)
Has full text
- yes (4)
Is part of the Bibliography
- yes (4)
Institute
- Technik (4)
Publisher
The incudo-malleal joint (IMJ) in the human middle ear is a true diarthrodial joint and it has been known that the flexibility of this joint does not contribute to better middle-ear sound transmission. Previous studies have proposed that a gliding motion between the malleus and the incus at this joint prevents the transmission of large displacements of the malleus to the incus and stapes and thus contributes to the protection of the inner ear as an immediate response against large static pressure changes. However, dynamic behavior of this joint under static pressure changes has not been fully revealed. In this study, effects of the flexibility of the IMJ on middle-ear sound transmission under static pressure difference between the middle-ear cavity and the environment were investigated. Experiments were performed in human cadaveric temporal bones with static pressures in the range of +/- 2 kPa being applied to the ear canal (relative to middle-ear cavity). Vibrational motions of the umbo and the stapes footplate center in response to acoustic stimulation (0.2-8 kHz) were measured using a 3D-Laser Doppler vibrometer for (1) the natural IMJ and (2) the IMJ with experimentally-reduced flexibility. With the natural condition of the IMJ, vibrations of the umbo and the stapes footplate center under static pressure loads were attenuated at low frequencies below the middle-ear resonance frequency as observed in previous studies. After the flexibility of the IMJ was reduced, additional attenuations of vibrational motion were observed for the umbo under positive static pressures in the ear canal (EC) and the stapes footplate center under both positive and negative static EC pressures. The additional attenuation of vibration reached 4~7 dB for the umbo under positive static EC pressures and the stapes footplate center under negative EC pressures, and 7~11 dB for the stapes footplate center under positive EC pressures. The results of this study indicate an adaptive mechanism of the flexible IMJ in the human middle ear to changes of static EC pressure by reducing the attenuation of the middle-ear sound transmission. Such results are expected to be used for diagnosis of the IMJ stiffening and to be applied to design of middle-ear prostheses.
This study describes a non-contact measuring and parameter identification procedure designed to evaluate inhomogeneous stiffness and damping characteristics of the annular ligament in the physiological amplitude and frequency range without the application of large static external forces that can cause unnatural displacements of the stapes. To verify the procedure, measurements were first conducted on a steel beam. Then, measurements on an individual human cadaveric temporal bone sample were performed. The estimated results support the inhomogeneous stiffness and damping distribution of the annular ligament and are in a good agreement with the multiphoton microscopy results which show that the posterior-inferior corner of the stapes footplate is the stiffest region of the annular ligament. This method can potentially help to establish a correlation between stiffness and damping characteristics of the annular ligament and inertia properties of the stapes and, thus, help to reduce the number of independent parameters in the model-based hearing diagnosis.
Investigation of tympanic membrane influences on middle-ear impedance measurements and simulations
(2020)
This study simulates acoustic impedance measurements in the human ear canal and investigates error influences due to improperly accounted evanescence in the probe’s near field, cross-section area changes, curvature of the ear canal, and pressure inhomogeneities across the tympanic membrane, which arise mainly at frequencies above 10 kHz. Evanescence results from strongly damped modes of higher order, which can only be found in the near field of the sound source and are excited due to sharp cross-sectional changes as they occur at the transition from the probe loudspeaker to the ear canal. This means that different impedances are measured depending on the probe design. The influence of evanescence cannot be eliminated completely from measurements, however, it can be reduced by a probe design with larger distance between speaker and microphone. A completely different approach to account for the influence of evanescence is to evaluate impedance measurements with the help of a finite element model, which takes the precise arrangement of microphone and speaker in the measurement into account. The latter is shown in this study exemplary on impedance measurements at a tube terminated with a steel plate. Furthermore, the influences of shape changes of the tympanic membrane and ear canal curvature on impedance are investigated.
This study describes a non-contact measuring and system identification procedure for evaluating inhomogeneous stiffness and damping characteristics of the annular ligament in the physiological amplitude and frequency range without the application of large static external forces that can cause unnatural displacements of the stapes. To verify the procedure, measurements were first conducted on a steel beam. Then, measurements on an individual human cadaveric temporal bone sample were performed. The estimated results support the inhomogeneous stiffness and damping distribution of the annular ligament and are in a good agreement with the multiphoton microscopy results which show that the posterior-inferior corner of the stapes footplate is the stiffest region of the annular ligament.