Refine
Document Type
- Journal article (5)
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Informatik (5)
Publisher
- Springer (3)
- De Gruyter (1)
- IEEE (1)
Accurate and safe neurosurgical intervention can be affected by intra-operative tissue deformation, known as brain-shift. In this study, we propose an automatic, fast, and accurate deformable method, called iRegNet, for registering pre-operative magnetic resonance images to intra-operative ultrasound volumes to compensate for brain-shift. iRegNet is a robust end-to-end deep learning approach for the non-linear registration of MRI-iUS images in the context of image-guided neurosurgery. Pre-operative MRI (as moving image) and iUS (as fixed image) are first appended to our convolutional neural network, after which a non-rigid transformation field is estimated. The MRI image is then transformed using the output displacement field to the iUS coordinate system. Extensive experiments have been conducted on two multi-location databases, which are the BITE and the RESECT. Quantitatively, iRegNet reduced the mean landmark errors from pre-registration value of (4.18 ± 1.84 and 5.35 ± 4.19 mm) to the lowest value of (1.47 ± 0.61 and 0.84 ± 0.16 mm) for the BITE and RESECT datasets, respectively. Additional qualitative validation of this study was conducted by two expert neurosurgeons through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that our proposed iRegNet is fast and achieves state-of-the-art accuracies outperforming state-of-the-art approaches. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance.
Purpose: Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid attenuated inversion recovery (FLAIR) MRI modality can provide the physician with information about tumor infiltration. Therefore, this paper proposes a new generic deep learning architecture, namely DeepSeg, for fully automated detection and segmentation of the brain lesion using FLAIR MRI data.
Methods: The developed DeepSeg is a modular decoupling framework. It consists of two connected core parts based on an encoding and decoding relationship. The encoder part is a convolutional neural network (CNN) responsible for spatial information extraction. The resulting semantic map is inserted into the decoder part to get the full-resolution probability map. Based on modified U-Net architecture, different CNN models such as residual neural network (ResNet), dense convolutional network (DenseNet), and NASNet have been utilized in this study.
Results: The proposed deep learning architectures have been successfully tested and evaluated on-line based on MRI datasets of brain tumor segmentation (BraTS 2019) challenge, including s336 cases as training data and 125 cases for validation data. The dice and Hausdorff distance scores of obtained segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly.
Conclusion: This study showed successful feasibility and comparative performance of applying different deep learning models in a new DeepSeg framework for automated brain tumor segmentation in FLAIR MR images. The proposed DeepSeg is open source and freely available at https://github.com/razeineldin/DeepSeg/.
Intraoperative brain deformation, so called brain shift, affects the applicability of preoperative magnetic resonance imaging (MRI) data to assist the procedures of intraoperative ultrasound (iUS) guidance during neurosurgery. This paper proposes a deep learning-based approach for fast and accurate deformable registration of preoperative MRI to iUS images to correct brain shift. Based on the architecture of 3D convolutional neural networks, the proposed deep MRI-iUS registration method has been successfully tested and evaluated on the retrospective evaluation of cerebral tumors (RESECT) dataset. This study showed that our proposed method outperforms other registration methods in previous studies with an average mean squared error (MSE) of 85. Moreover, this method can register three 3D MRI-US pair in less than a second, improving the expected outcomes of brain surgery.
Purpose
Artificial intelligence (AI), in particular deep neural networks, has achieved remarkable results for medical image analysis in several applications. Yet the lack of explainability of deep neural models is considered the principal restriction before applying these methods in clinical practice.
Methods
In this study, we propose a NeuroXAI framework for explainable AI of deep learning networks to increase the trust of medical experts. NeuroXAI implements seven state-of-the-art explanation methods providing visualization maps to help make deep learning models transparent.
Results
NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e., image classification and segmentation using magnetic resonance (MR) modality. Visual attention maps of multiple XAI methods have been generated and compared for both applications. Another experiment demonstrated that NeuroXAI can provide information flow visualization on internal layers of a segmentation CNN.
Conclusion
Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist radiologists and medical professionals in the detection and diagnosis of brain tumors in the clinical routine of cancer patients. The code of NeuroXAI is publicly accessible at https://github.com/razeineldin/NeuroXAI.
Accurate localization of gliomas, the most common malignant primary brain cancer, and its different sub-region from multimodal magnetic resonance imaging (MRI) volumes are highly important for interventional procedures. Recently, deep learning models have been applied widely to assist automatic lesion segmentation tasks for neurosurgical interventions. However, these models are often complex and represented as “black box” models which limit their applicability in clinical practice. This article introduces new hybrid vision Transformers and convolutional neural networks for accurate and robust glioma segmentation in Brain MRI scans. Our proposed method, TransXAI, provides surgeon-understandable heatmaps to make the neural networks transparent. TransXAI employs a post-hoc explanation technique that provides visual interpretation after the brain tumor localization is made without any network architecture modifications or accuracy tradeoffs. Our experimental findings showed that TransXAI achieves competitive performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about the tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully. Thus, it enables the physicians’ trust in such deep learning systems towards applying them clinically.