Refine
Document Type
Language
- English (6)
Is part of the Bibliography
- yes (6)
Institute
- Technik (6)
Publisher
- IEEE (5)
- VDE Verlag (1)
In this work, a brushless, harmonic-excited wound-rotor synchronous machine is investigated which utilizes special stator and rotor windings. The windings magnetically decouple the fundamental torque-producing field from the harmonic field required for the inductive power transfer to the field coil. In contrast to conventional harmonic-excited synchronous machines, the whole winding is utilized for both torque production and harmonic excitation such that no additional copper for auxiliary windings is needed. Different rotor topologies using rotating power electronic components are investigated and their efficiencies have been compared based on Finite-Element calculation and circuit analysis.
In this work, a brushless, harmonic-excited wound-rotor synchronous machine without any auxiliary windings which can provide full torque at startup is investigated experimentally. The excitation power is transferred inductively by superimposing an additional harmonic field of different pole-pair number on top of the airgap field. This is achieved by feeding the parallel paths of the stator and rotor winding separately. A prototype for the harmonic-excited synchronous machine has been constructed and experimental results are presented to verify the concept. The main loss contributors are identified and the importance of considering core losses under harmonic excitation is discussed. A general analytical model for harmonic excited synchronous machines is proposed which enables a quick estimation of the iron core flux densities and the core losses generated by the additional harmonic currents.
In this work, a comparison between different brushless harmonic-excited wound-rotor synchronous machines is performed. The general idea of all topologies is the elimination of the slip rings and auxiliary windings by using the already existing stator and rotor winding for field excitation. This is achieved by injecting a harmonic airgap field with the help of power electronics. This harmonic field does not interact with the fundamental field, it just transfers the excitation power across the airgap. Alternative methods with varying number of phases, different pole-pair combinations, and winding layouts are covered and compared with a detailed Finite-Element-parameterized model. Parasitic effects due to saturation and coupling between the harmonic and main windings are considered.
A novel brushless excitation concept for synchronous machines with a rotating power converter is proposed in this paper. The concept does not need an auxiliary winding or any other modification to the machine structure apart from an inverter with a DC link capacitor and a controller on the rotor. The power required for the rotor excitation is provided by injecting harmonics into the stator winding. Thus, a voltage in the field coil is induced. The rotor inverter is controlled such that the alternating current charges the DC link capacitor. At the same time the inverter supplies the DC field current to the field coil. The excitation concept is first developed in theory, then presented using an analytical model and FEA, and lastly investigated with a prelimininary experimental setup.
In this work design rules for a novel brushless excitation system for externally excited synchronous machines are discussed. The concept replaces slip rings with a fullbridge active rectifier and a controller mounted on the rotor. An AC signal induced from the stator is used to charge the rotor DC link. The DC current for the rotor excitation is provided from this DC link source. Finite element analysis of an existing machine is used to analyze the practicability of the excitation system.