Refine
Document Type
- Conference proceeding (17)
- Journal article (10)
- Book chapter (1)
Is part of the Bibliography
- yes (28)
Institute
- ESB Business School (28)
Publisher
- Elsevier (14)
- Stellenbosch University (3)
- Technische Informationsbibliothek (2)
- Technische Universität Chemnitz (2)
- Curran Associates Inc. (1)
- IEEE (1)
- LIT Verlag (1)
- Leibniz-Universität Hannover (1)
- Next Level Interactive (1)
- SciTePress (1)
Planning of available resources considering ergonomics under deterministic highly variable demand
(2020)
In this paper, a method for hybrid short- to long-term planning of available resources for operations is presented, which is based on a known or deterministically forecasted but highly variable demand. The method considers quantitative measures such as the performance and the availability of resources, ergonomically relevant KPI and ultimately process costs in order to serve as a pragmatic planning tool for operations managers in SMEs. Specifically, the method enables exploiting the ergonomic advantages of available flexible automation technology (e.g. AGVs or picking robots), while assuring that these do not represent a capacity bottleneck. After presenting the method along with the necessary assumptions, mainly concerning the availability of data for the calculations, we report a case study that quantifies the impact of throughput variability on the selection of different process alternatives, where different teams of resources are used.
Increasingly volatile market conditions and manufacturing environments combined with a rising demand for highly personalized products, the emergence of new technologies like cyber-physical systems and additive manufacturing as well as an increasing cross-linking of different entities (Industrie 4.0) will result in fundamental changes of future work and logistics systems. The place of production, the logistical network and the respective production system will underlie the requirements of constant changes and therefore sources and sinks of logistical networks have to obey the versatility of (cyber-physical) production systems. To cope with the arising complexity to control and monitor changeable production and logistics systems, decentralized control systems are the mean of choice since centralized systems are pushed to their limits in this regard. This paradigm shift will affect the overall concept under which production and logistics is planned, managed and controlled and how companies interact and collaborate within the emerging value chains by using dynamic methods to generate and execute the created network and to allocate available resources to fulfill the demand for customized products. In this field of research learning factories, like the ESB Logistics Learning Factory at ESB Business School (Reutlingen University), provide a great potential as a risk free test bed to develop new methods and technical solutions, to investigate new technologies regarding their practical use and to transfer the latest state of knowledge and specific competences into the training of students and professionals. Keeping with these guiding principles ESB Business School is transferring its existing production system into a cyber-physical production system to investigate innovative solutions for the design of human-machine collaboration and technical assistance systems as wells as to develop decentralized control methods for intralogistics systems following the requirements of changeable work systems including the respective design of dynamic inbound and outbound logistic networks.
Decreasing batch sizes in production in line with Industrie 4.0 will lead to tremendous changes of the control of logistic processes in future production systems. Intelligent bins are crucial enablers to establish decentrally controlled material flow systems in value chain networks as well as at the intralogistics level. These intelligent bins have to be integrated into an overall decentralized monitoring and control approach and have to interact with humans and other entities just like other cyber-physical systems (CPS) within the cyber-physical production system (CPPS). To realize a decentralized material supply following the overall aim of a decentralized control of all production and logistics processes, an intelligent bin system is currently developed at the ESB Logistics Learning Factory. This intelligent bin system will be integrated into the self developed, cloud-based and event-oriented SES system (so-called “Self Execution System”) which goes beyond the common functionalities and capabilities of traditional manufacturing execution systems (MES).
To ensure a holistic integration of the intelligent bin for different material types into the SES framework, the required hard- and software components for the decentrally controlled bin system will be split into a common and an adaptable component. The common component represents the localization and network layer which is common for every bin, whereas the flexible component will be customizable to different requirements, like to the specific characteristics of the parts.
The high system flexibility necessary for the full automation of complex and unstructured tasks leads to increased technological complexity, thus to higher costs and lower performance. In this paper, after an introduction to the different dimensions of flexibility, a method for flexible modular configuration and evaluation of systems of systems is introduced. The method starts from process requirements and, considering factors such as feasibility, development costs, market potential and effective impact on the current processes, enables the evaluation of a flexible systems of systems equipped with the needed functionalities before its actual development. This allows setting the focus on those aspects of flexibility that add market value to the system, thus promoting the efficient development of systems addressed to interested customers in intralogistics. An example of application of the method is given and discussed.
Future intralogistics systems need to adapt flexibly to changing material flow requirements in line with future versatile factory environments, producing personalized products under the performance and cost conditions of today's mass production. Small batch sized down to a batch size of "1" lead to a high complexity in the design and economical manufacturing of these customized products. Intralogistics systems are integrated into higher-level areas (segment level) as well as into upsteam and downstream performance units (system-wide areas). This includes the logistic activities relevant for the system (organized according to storage, picking, transport) such as transportation or storage tasks of tools, semi-finished products, components, assemblies and containers, and waste. Today's centralized material flow control systems, which work based on predefined processes, are not capable and more specifically not suitable to deal with the arising complexity of changeable intralogistics systems. Autononomous, decentralized material flow control systems distribute the required decision-making and control processes on intelligent logistic entities. A major step for the development of an autonomous control method for hybrid intralogistics systems (manual, semi-automated and automated) is the development of a generic archetype for intralogistics systems regarding the system boundaries, elements and relations resulting in a descriptive model taking into account amongst others the time of demand, availability of resources, economic efficiency and technical performance parameters. The ESB Logistics Learning Factory at ESB Business School (Reutlingen University) serves for this as a close-to-reality development and validation environment.
The level of automation in intralogistics has steadily increased over recent years. For small and medium-sized enterprises (SMEs), however, the associated digital change is a major challenge. Since most SMEs are facing increasing sales volumes (e.g. due to e-commerce and good overall economy) in combination with decreasing lot sizes due to the market demand for individualized products, SMEs have to find innovative solutions to cope with these challenges in production as well as in logistics. Innovative technologies, like 3D printing technologies for the production for small lot sizes and future-oriented intralogistics technologies can serve as enablers in logistics to realize flexible logistic processes for increasing market requiremments. Considering that, this paper examines innovative and future-oriented technologies for intralogistics such as smart containers, driverless forklift systems, data glasses, smart shelves and smart pallets regarding their potential for SMEs. This explorative research paper shows that digital technologies are already suitable and available for SMEs.However, challenges are still seen in areas like the identification and digitalization potential and the financing of these new projects. The primary reason escpecially for SMEs for this is that they have to make investments based on an economically feasible payback period and less based on prestigious reasons like digitalization flagship projecs done by large corporations. In addition, the identification of feasible starting points for digitalization within intralogistic systems embedded in specific factory processes is a major challenge not only for SMEs.
Mastering of complex systems and interfaces, idea and innovation management as well as virtually integrated product and process planning are essential competences to be developed and fostered to cope with the changing role of the workforce in a future industry 4.0 work system. Learning factories, like the Logistics Learning Factory at Reutlingen University, which are equipped with state-of-the-art infrastructure, offer a high potential to decidedly address these competences.
Shorter product life cycles and emerging technologies in the field of industrial equipment are changing the prerequisites and circumstances under which the design of assembly and logistics systems take place. Planners have to adapt the production in accordance with the underlying product at a higher pace, oversee a more complex system and - most importantly - find the ideal solution for functional as well as social interaction between humans and machines in a cyber-physical system. Such collaborative work systems consider the individual capabilities and potentials of humans and machines to combine them in a manner that assists the operator during his daily work routine towards more productive, less burdening work. To be able to design work systems which act on that maxim, specific competences such as the ability of integrated process and product planning as well as systems and interface competence are required. The ESB Logistics Learning Factory trains students as well as professionals to gain such qualification by providing a close-to-reality learning environment based on a didactical concept which covers all relevant methods for ergonomic work system design and a state-of-the-art infrastructure composed of a manual assembly system, service robots, visual assistance systems, sensor-based work load monitoring and logistical resources. Group-based, activity oriented scenarios enable the participants to put the learnings into practice within their professional environments. By this, learning factories have an indirect impact on the transfer of proven best practices to the industry and thereby on the diffusion of the idea of human-centric working environment.
Shorter product life cycles and emerging technologies are changing the circumstances under which the design of assembly and logistics systems has to be carried out. Engineers are in charge of adapting the production in accordance with the underlying product at a higher pace, oversee a more complex system and find the ideal solution for a functional work system design as well as social interactions between humans and machines in cyber-physical systems. Such collaborative work systems consider the individual capabilities and potentials of humans and machines to combine them in a manner that assists the operator during his daily work routine. To be able to design such work systems, specific competences such as the ability of integrated process and product planning as well as systems and interface competence are required. Learning factories train students as well as professionals to gain such qualifications by providing a close-to-reality learning environment based on a didactical concept which covers all relevant methods for ergonomic work system design and a state-of-the-art infrastructure. Group-based, activity oriented scenarios enable the participants to put the learnings into their everyday work life. Thereby, learning factories have an indirect impact on the transfer of proven best practices to the industry.
The increasing emergence of cyber-physical systems (CPS) and a global crosslinking of these CPS to cyber-physical production systems (CPPS) are leading to fundamental changes of future work and logistic systems requiring innovative methods to plan, control and monitor changeable production systems and new forms of human-machine-collaboration. Particularly logistic systems have to obey the versatility of CPPS and will be transferred to so-called cyber physical logistic systems, since the logistical networks will underlie the requirements of constant changes initiated by changeable production systems. This development is driven and enhanced by increasingly volatile and globalized market and manufacturing environments combined with a high demand for individualized products and services. Also nowadays mainly used centralized control systems are pushed to their limits regarding their abilities to deal with the arising complexity to plan, control and monitor changeable work and logistic systems. Decentralized control systems bear the potential to cope with these challenges by distributing the required operations on various nodes of the resulting decentralized control system.
Learning factories, like the ESB Logistics Learning Factory at ESB Business School (Reutlingen University), provide a wide range of possibilities to develop new methods and innovative technical solutions in a risk-free and close-to-reality factory environment and to transfer knowledge as well as specific competences into the training of students and professionals. To intensify the research and training activities in the field of future work and logistics systems, ESB Business School is transferring its existing production system into a CPPS involving decentralized planning, control and monitoring methods and systems, human-machine-collaboration as well as technical assistance systems for changeable work and logistics systems.