Refine
Document Type
- Conference proceeding (13)
- Journal article (10)
- Book chapter (1)
Is part of the Bibliography
- yes (24)
Institute
- ESB Business School (24)
Publisher
Planning of available resources considering ergonomics under deterministic highly variable demand
(2020)
In this paper, a method for hybrid short- to long-term planning of available resources for operations is presented, which is based on a known or deterministically forecasted but highly variable demand. The method considers quantitative measures such as the performance and the availability of resources, ergonomically relevant KPI and ultimately process costs in order to serve as a pragmatic planning tool for operations managers in SMEs. Specifically, the method enables exploiting the ergonomic advantages of available flexible automation technology (e.g. AGVs or picking robots), while assuring that these do not represent a capacity bottleneck. After presenting the method along with the necessary assumptions, mainly concerning the availability of data for the calculations, we report a case study that quantifies the impact of throughput variability on the selection of different process alternatives, where different teams of resources are used.
After the initiator of the ESB Logistics Learning Factory, Prof. Vera Hummel had made experience in developing and implementing a concept for a Learning Factory for Advanced Industrial Engineering (aIE) at the University of Stuttgart, Institute IFF between 2005 and 2008, she was appointed as a full professor at ESB Business School, a faculty of Reutlingen University in March 2010. Lacking a realistic, hands on learning and teaching environment of industrial scale for its industrial engineering students, first ideas for a Learning Factory that would strongly focus on all aspects of production logistics were drafted in 2012. Already back then, a strong integration of virtual and physical factory was desired: While the Learning Factory itself would be physical, the neighboring partners along the supply chain, such as suppliers or distribution warehouses, could be added in a fully virtual way. Considering implementation of the ESB Logistics Learning Factory a strategic initiative of the university, initial funding was provided by the faculty ESB Business School itself. Following its own creed, to provide future-oriented training for the region, also primarily local suppliers and manufacturers were selected as equipment providers to the new Learning Factory. During the initialization phase, 2014, a total of three researchers and nine students worked approximately four months to set up a first assembly line, storage racks, AGVs, or pick-by-light systems in conjunction with the underlying didactical concept. Since then, several hundred of students have participated in trainings and lectures held in the ESB Logistics Learning Factory, several research projects were carried out, and multiple high-level politicians and industry executives have been touring the shop floor. Also, more than EUR 2 million in research and infrastructure funds could be secured for expansion and upgrade — allowing the ESB Logistics Learning Factory today to represent many core aspects of an Industrie 4.0 production environment.
The global demand for individualized products leading to decreasing production batch sizes requires innovative approaches how to organize production and logistics systems in a dynamic manner. Current material flow systems mainly rely on predefined system structures and processes, which result in a huge increase of complexity and effort for system and process changes to realize an optimized production and material provision of individualized products. Autonomous production and logistics entities in combination with intelligent products or logistic load carriers following the vision of the “Internet of Things” offer a promising solution for mastering this complexity based on autonomous, decentralized and target size-optimized decision making and structure formation without the need for predefined processes and central decision-making bodies. Customer orders are going to prioritize themselves and communicate directly with the required production and logistics resources. Bins containing the required materials are going to communicate with the conveyors or workers of the respective intralogistics system organizing and controlling the material flow to the autonomously selected workstation. A current research project is the development of a collaborative tugger train combing the potential of automation and human-robot collaboration in intralogistics. This tugger train is going to be integrated into a self organized intralogistics scenario involving individualized customer orders (low to high batch sizes). To classify the application of self-organization within intralogistics systems, a criteria catalogue has been developed. The application of this criteria catalogue will be demonstrated on the example of a self-organization scenario involving the collaborative tugger train and an intelligent bin system.
The persistent development towards decreasing batch sizes due to an ongoing product individualization, as well as increasingly dynamic market and competitive conditions lead to new changeability requirements in production environments. Since each of the individualized products mgith require different base materials or components and manufacturing resources, the paths of the products giong through the factory as well as the required internal transport and material supply processes are going to differ for every product. Conventional planning and control systems, which rely on predifined processes and central decision-making, are not capable to deal with the arising system's complexity along the dimensions of changing goods, layouts and throughput requirements. The concepts of "self-organization" in combination with "autonomous ocntrol" provide promising solutions to solve these new requirements by using among other things the potential of autonomous, decentralized and target-optimized logistical objects (e.g. smart products, bins and conveyor systems) wich are able to communicate and interact with each other as well as with human wokers. To investigate the potential of automation and human-robot collaboration for intralogistics, a research project for the development of a collaborative tugger train has been started at the ESB Logistics Learning Factory in lin with various student projects in neighboring research areas. This collaboraive tugger train system in combination with other manual (e.g. handcarts) and (semi-) automated conveyoer systems (e.g. automated guided forklift) will be integrated into a dynamic, self-organized scenario with varying production batch sizes to develop a method for target-oriented sefl-organization and autonomous control of intralogistics systems. For a structured investigation of self-organized scenarios a generic intralogistics model as well as a criteria cataloghe has been developed. The ESB Logistics Learning will serve as a practice-oriented research, validation and demonstration environment for these purposes.
Increasing flexibility, greater transparency and faster adaptability play a key role in the development of future intralogistics. Ever-changing environmental conditions require easy extensibility and modifiability of existing bin systems. This research project explores approaches to transfer the Internet of Things (IoT) paradigm to intralogistics. This allows a synchronization of the material and information flow. The bin is enabled by the implementation of adequate hardware and software components to capture, store, process and forward data to selected system subscribers. Monitoring the processes in the intralogistics by means of the smart bin system ensures the implementation of appropriate actions in case of defined deviations. By using explorative expert interviews with representatives from the automotive and pharmaceutical industries, seven practical application scenarios were defined. On this basis, the requirements of smart bin systems were examined. For each individual case of application, a system model was created in order to obtain an overview of the system components and thus reveal similarities and differences. Based on the similarities of the system models, a general requirement profile was derived. After the hardware components of the bin system had been determined, a utility analysis was carried out to find the adequate IoT software. The utility analysis was conducted with a focus on data acquisition and data transfer, data storage, data analysis, data presentation as well as authorization management and data security. The results show that there is great interest in easily expandable and modifiable bin systems, as in all cases, the necessary information flow in the existing bin system has to be improved by means of new IoT hardware and software components.
Decreasing batch sizes in production in line with Industrie 4.0 will lead to tremendous changes of the control of logistic processes in future production systems. Intelligent bins are crucial enablers to establish decentrally controlled material flow systems in value chain networks as well as at the intralogistics level. These intelligent bins have to be integrated into an overall decentralized monitoring and control approach and have to interact with humans and other entities just like other cyber-physical systems (CPS) within the cyber-physical production system (CPPS). To realize a decentralized material supply following the overall aim of a decentralized control of all production and logistics processes, an intelligent bin system is currently developed at the ESB Logistics Learning Factory. This intelligent bin system will be integrated into the self developed, cloud-based and event-oriented SES system (so-called “Self Execution System”) which goes beyond the common functionalities and capabilities of traditional manufacturing execution systems (MES).
To ensure a holistic integration of the intelligent bin for different material types into the SES framework, the required hard- and software components for the decentrally controlled bin system will be split into a common and an adaptable component. The common component represents the localization and network layer which is common for every bin, whereas the flexible component will be customizable to different requirements, like to the specific characteristics of the parts.
The high system flexibility necessary for the full automation of complex and unstructured tasks leads to increased technological complexity, thus to higher costs and lower performance. In this paper, after an introduction to the different dimensions of flexibility, a method for flexible modular configuration and evaluation of systems of systems is introduced. The method starts from process requirements and, considering factors such as feasibility, development costs, market potential and effective impact on the current processes, enables the evaluation of a flexible systems of systems equipped with the needed functionalities before its actual development. This allows setting the focus on those aspects of flexibility that add market value to the system, thus promoting the efficient development of systems addressed to interested customers in intralogistics. An example of application of the method is given and discussed.
Future intralogistics systems need to adapt flexibly to changing material flow requirements in line with future versatile factory environments, producing personalized products under the performance and cost conditions of today's mass production. Small batch sized down to a batch size of "1" lead to a high complexity in the design and economical manufacturing of these customized products. Intralogistics systems are integrated into higher-level areas (segment level) as well as into upsteam and downstream performance units (system-wide areas). This includes the logistic activities relevant for the system (organized according to storage, picking, transport) such as transportation or storage tasks of tools, semi-finished products, components, assemblies and containers, and waste. Today's centralized material flow control systems, which work based on predefined processes, are not capable and more specifically not suitable to deal with the arising complexity of changeable intralogistics systems. Autononomous, decentralized material flow control systems distribute the required decision-making and control processes on intelligent logistic entities. A major step for the development of an autonomous control method for hybrid intralogistics systems (manual, semi-automated and automated) is the development of a generic archetype for intralogistics systems regarding the system boundaries, elements and relations resulting in a descriptive model taking into account amongst others the time of demand, availability of resources, economic efficiency and technical performance parameters. The ESB Logistics Learning Factory at ESB Business School (Reutlingen University) serves for this as a close-to-reality development and validation environment.
The level of automation in intralogistics has steadily increased over recent years. For small and medium-sized enterprises (SMEs), however, the associated digital change is a major challenge. Since most SMEs are facing increasing sales volumes (e.g. due to e-commerce and good overall economy) in combination with decreasing lot sizes due to the market demand for individualized products, SMEs have to find innovative solutions to cope with these challenges in production as well as in logistics. Innovative technologies, like 3D printing technologies for the production for small lot sizes and future-oriented intralogistics technologies can serve as enablers in logistics to realize flexible logistic processes for increasing market requiremments. Considering that, this paper examines innovative and future-oriented technologies for intralogistics such as smart containers, driverless forklift systems, data glasses, smart shelves and smart pallets regarding their potential for SMEs. This explorative research paper shows that digital technologies are already suitable and available for SMEs.However, challenges are still seen in areas like the identification and digitalization potential and the financing of these new projects. The primary reason escpecially for SMEs for this is that they have to make investments based on an economically feasible payback period and less based on prestigious reasons like digitalization flagship projecs done by large corporations. In addition, the identification of feasible starting points for digitalization within intralogistic systems embedded in specific factory processes is a major challenge not only for SMEs.
Rapidly changing market conditions and global competition are leading to an increasing complexity of logistics systems and require innovative approaches with respect to the organisation and control of these systems. In scientific research, concepts of autonomously controlled logistics systems show a promising approach to meet the increasing requirements for flexible and efficient order processing. In this context, this work aims to introduce a system that is able to adjust order processing dynamically, and optimise intralogistics transportation regarding various generic intralogistics target criteria. The logistics system under consideration consists of various means of transport for autonomous decision-making and fulfilment of transport orders with defined source-sink relationships. The context of this work is set by introducing the Learning Factory Werk 150 with its existing hardware and software infrastructure and its defined target figures to measure the performance of the system. Specifically, the important target figures cost and performance are considered for the transportation system. The core idea of the system’s logic is to solve the problem of order allocation to specific means of transport by linking a Genetic Algorithm with a Multi-Agent System. The implementation of the developed system is described in an application scenario at the learning factory.