Refine
Document Type
- Journal article (7)
Language
- English (7)
Is part of the Bibliography
- yes (7)
Institute
- Life Sciences (7)
Publisher
- MDPI (3)
- Elsevier (2)
- IM Publications Open LLP (1)
- Sage Publishing (1)
An ultraviolet visible (UV–Vis) spectroscopy method was developed that can quantitatively characterize a technical copper surface to determine oxide layers and organic impurities. The oxide layers were produced by a heating step at 175 ℃ for four different times (range = 1–10 min). Partial least squares (PLS) regression was used to establish a relation between the UV–Vis spectra and film thickness measurements using Auger electron spectroscopy depth profiles. The validation accuracy of the regression is in the range of approximately 2.3 nm. The prediction model allowed obtaining an estimation of the oxide layer thickness with an absolute error of 2.9 nm. Alternatively, already known methods cannot be used because of the high roughness of the technical copper surfaces. An integrating sphere is used to measure the diffuse reflectance of these surfaces, providing an average over all angles of illumination and observation.
The detection and characterisation of oxide layers on metallic copper samples plays an important role for power electronic modules in the automotive industry. However, since precise identification of oxide layers by visual inspection is difficult and time consuming due to inhomogeneous colour distribution, a reliable and efficient method for estimating their thickness is needed. In this study, hyperspectral imaging in the visible wavelength range (425–725 nm) is proposed as an in-line inspection method for analysing oxide layers in real-time during processing of copper components such as printed circuit boards in the automotive industry. For implementation in the production line a partial least square regression (PLSR) model was developed with a calibration set of n = 12 with about 13,000 spectra per sample to determine the oxide layer thickness on top of the technical copper surfaces. The model shows a good prediction performance in the range of 0–30 nm compared to Auger electron spectroscopy depth profiles as a reference method. The root mean square error (RMSE) is 1.75 nm for calibration and 2.70 nm for full cross validation. Applied to an external dataset of four new samples with about 13,000 spectra per sample the model provides an RMSE of 1.84 nm for prediction and demonstrates the robustness of the model during real-time processing. The results of this study prove the ability and usefulness of the proposed method to estimate the thickness of oxide layers on technical copper. Hence, the application of hyperspectral imaging for the industrial process control of electronic devices is very promising.
We report an investigation into the distribution of copper oxidation states in oxide films formed on the surfaces of technical copper. The oxide films were grown by thermal annealing at ambient conditions and studied using Auger depth profiling and UV–Vis spectroscopy. Both Auger and UV–Vis data were evaluated applying multivariate curve resolution (MCR). Both experimental techniques revealed that the growth of Cu2O dominates the initial ca. 40 nm of oxide films grown at 175 °C, while further oxide growth is dominated by CuO formation. The largely coincident results from both experimental approaches demonstrates the huge benefit of the application of UV–Vis spectroscopy in combination with MCR analysis, which provides access to information on chemical state distributions without the need for destructive sample analysis. Both approaches are discussed in detail.
To correctly assess the cleanliness of technical surfaces in a production process, corresponding online monitoring systems must provide sufficient data. A promising method for fast, large-area, and non-contact monitoring is hyperspectral imaging (HSI), which was used in this paper for the detection and quantification of organic surface contaminations. Depending on the cleaning parameter constellation, different levels of organic residues remained on the surface. Afterwards, the cleanliness was determined by the carbon content in the atom percent on the sample surfaces, characterized by XPS and AES. The HSI data and the XPS measurements were correlated, using machine learning methods, to generate a predictive model for the carbon content of the surface. The regression algorithms elastic net, random forest regression, and support vector machine regression were used. Overall, the developed method was able to quantify organic contaminations on technical surfaces. The best regression model found was a random forest model, which achieved an R2 of 0.7 and an RMSE of 7.65 At.-% C. Due to the easy-to-use measurement and the fast evaluation by machine learning, the method seems suitable for an online monitoring system. However, the results also show that further experiments are necessary to improve the quality of the prediction models.
Hyperspectral imaging and reflectance spectroscopy in the range from 200–380 nm were used to rapidly detect and characterize copper oxidation states and their layer thicknesses on direct bonded copper in a non-destructive way. Single-point UV reflectance spectroscopy, as a well-established method, was utilized to compare the quality of the hyperspectral imaging results. For the laterally resolved measurements of the copper surfaces an UV hyperspectral imaging setup based on a pushbroom imager was used. Six different types of direct bonded copper were studied. Each type had a different oxide layer thickness and was analyzed by depth profiling using X-ray photoelectron spectroscopy. In total, 28 samples were measured to develop multivariate models to characterize and predict the oxide layer thicknesses. The principal component analysis models (PCA) enabled a general differentiation between the sample types on the first two PCs with 100.0% and 96% explained variance for UV spectroscopy and hyperspectral imaging, respectively. Partial least squares regression (PLS-R) models showed reliable performance with R2c = 0.94 and 0.94 and RMSEC = 1.64 nm and 1.76 nm, respectively. The developed in-line prototype system combined with multivariate data modeling shows high potential for further development of this technique towards real large-scale processes.
Employing diffuse reflection ultraviolet visible (UV–Vis) spectroscopy we developed an approach that is capable to quantitatively determine flux residues on a technical copper surface. The technical copper surface was soldered with a no-clean flux system of organic acids. By a post-solder cleaning step with different cleaning parameters, various levels of residues were produced. The surface was quantitatively and qualitatively characterized using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and diffuse reflection UV–Vis spectroscopy. With the use of a multivariate analysis (MVA) we examined the UV–Vis data to create a correlation to the carbon content on the surface. The UV–Vis data could be discriminated for all groups by their level of organic residues. Combined with XPS the data were evaluated by a partial least squares (PLS) regression to establish a model. Based on this predictive model, the carbon content was calculated with an absolute error of 2.7 at.%. Due to the high correlation of predictive model, the easy-to-use measurement and the evaluation by multivariate analysis the developed method seems suitable for an online monitoring system. With this system, flux residues can be detected in a manufacturing cleaning process of technical surfaces after soldering.
Rapid detection of cleanliness on direct bonded copper substrate by using UV hyperspectral imaging
(2024)
In the manufacturing process of electrical devices, ensuring the cleanliness of technical surfaces, such as direct bonded copper substrates, is crucial. An in-line monitoring system for quality checking must provide sufficiently resolved lateral data in a short time. UV hyperspectral imaging is a promising in-line method for rapid, contactless, and large-scale detection of contamination; thus, UV hyperspectral imaging (225–400 nm) was utilized to characterize the cleanliness of direct bonded copper in a non-destructive way. In total, 11 levels of cleanliness were prepared, and a total of 44 samples were measured to develop multivariate models for characterizing and predicting the cleanliness levels. The setup included a pushbroom imager, a deuterium lamp, and a conveyor belt for laterally resolved measurements of copper surfaces. A principal component analysis (PCA) model effectively differentiated among the sample types based on the first two principal components with approximately 100.0% explained variance. A partial least squares regression (PLS-R) model to determine the optimal sonication time showed reliable performance, with R 2 cv = 0.928 and RMSECV = 0.849. This model was able to predict the cleanliness of each pixel in a testing sample set, exemplifying a step in the manufacturing process of direct bonded copper substrates. Combined with multivariate data modeling, the in-line UV prototype system demonstrates a significant potential for further advancement towards its application in real-world, large-scale processes.