Refine
Document Type
- Journal article (2)
- Report (1)
Is part of the Bibliography
- yes (3)
Institute
- Texoversum (3)
Publisher
Im IGF-Projekt Nr. 19617 N wurden stickstoff- und phosphorsubstituierte Alkoxysilane hergestellt und ihre flammhemmenden Eigenschaften für Textilien untersucht. Die Synthesen erfolgten nach unterschiedlichen Strategien wie der Klick-Chemie und der nukleophilen Substitution kommerziell erhältlicher Organophosphorverbindungen mit aminobasierten Trialkoxysilanen und/oder Cyanurchlorid. Diese neuartigen, halogen- und aldehydfreien Flammschutzmittel wurden auf Stoffe aus Baumwolle (BW), Polyethylenterephthalat (PET), Polyamid (PA), sowie Mischgeweben daraus mit der industriell etablierten Pad-Dry-Cure-Technik und mittels Sol-Gel-Verfahren aufgetragen. Die flammhemmenden Eigenschaften wurden mit den Prüfverfahren nach EN ISO 15025 (Schutzkleidung – Schutz gegen Hitze und Flammprüfverfahren für begrenzte Flammenausbreitung= bewertet. Eine gute Schwerentflammbarkeit der hybriden organisch-anorganischen Materialien wurde bei einer geringen Menge von 3-5 Gew.% auf Baumwollgeweben erreicht. Darüber hinaus konnten die Wasserlöslichkeit und die Waschbeständigkeit durch die an das Phosphoratom gebundenen funktionellen Gruppen und durch die Optimierung der Härtungstemperatur kontrolliert werden. Insgesamt zeigte das Forschungsprojekt, dass N-P-Silane sehr gute permanente Flammschutzmittel für Textilien sind.
Ziel des Forschungsvorhabens war es, unter Verwendung von photokatalytisch aktiven Zinkoxid- und/oder Titandioxid-Partikeln Kombinationsausrüstungen für die Textilindustrie zu entwickeln, welche einen hohen UV-Schutz (UPF-Wert: 50+), eine hohe antimikrobielle Wirksamkeit und selbsteinigende Eigenschaften garantieren, um so neue hygienischere Textilien zu schaffen. Hierzu sollten wässrige Ausrüstungen entwickelt werden, die über konventionelle Veredlungstechniken – „pad-dry-cure“ – appliziert werden können. Die Aktivität der Partikel sollte unter Einstrahlung von Raumlicht gegeben sein. Daher sollten die Partikel so modifiziert werden, dass ihre Absorption im Wellenlängenbereich des sichtbaren Lichtes liegt.
Für die Erfüllung der Projektziele wurden verschiedene dotierte TiO2- und ZnO-Nanopartikel synthetisiert, die durch das Einbringen von Dotanden eine Verschiebung der Absorption elektromagnetischer Strahlung erfahren haben. Ein Aktivitätsscreening geeigneter Kandidaten zeigte, dass einige einen Abbau organischer Referenzmaterialien katalysierten und eine antibakterielle Aktivität vorwiesen. Eisendotiertes Zinkoxid (Fe-ZnO) vereinte die beiden gewünschten Eigenschaften in ausreichendem Maße und verfügte zudem über eine hohe Absorption von UV-Strahlung, sodass damit auch das dritte Projektziel - ein ausreichender UV-Schutz - erreicht werden konnte.
Die wiederholte Synthese von Fe-ZnO gelang im Labormaßstab. Die Partikel konnten durch das Sol-Gel-Verfahren mittels anorganischem Tetraethoxysilan, sowie über einen organischen Polyurethanbasierten Binder durch Foulardierverfahren an verschiedenen Textilien immobilisiert werden. Die Waschstabilität war gegeben und eine Photodegradation des Binders und der Textilien konnte zumindest für das TEOS-System ausgeschlossen werden. Das Aktivitätsscreening der ausgerüsteten Textilien zeigte, dass immobilisierte Nanopartikel zwar zum Erreichen der anvisierten
Projektziele genügen, jedoch konnte die Aktivität des als Referenz verwendeten TiO2 nicht übertroffen werden.
Insgesamt ergab sich ein Einblick in den Nutzen von Nanopartikeln als katalytisch aktive Substanz, die zur Ausrüstung von Textilien geeignet ist. Um eine genügende Aktivität im sichtbaren Wellenlängenbereich zu erzielen und damit einen Nutzen für eine Innenraumanwendung zu generieren, müssen jedoch deutlich besser die Grundlagen der Dotierung und ihre Auswirkung auf die ROS-Generierung verstanden werden.
Die Ziele des Forschungsvorhabens wurden zum Teil erreicht.
A concept to prepare a highly hydrophobic composite with self-healing properties has been designed and verified. The new material is based on a composite of a crystalline hydrophobic fluoro wax, synthesized from montan waxes and perfluoroethylene alcohols, combined with spherical silica nanoparticles equipped with a hydrophobic shell. Highly repellent layers were prepared using this combination of a hydrophobic crystalline wax and silica nanoparticles. The novel aspect of our concept was to prepare a ladder-like structure of the hydrophobic shell allowing the inclusion of a certain share of wax molecules. Wax molecules trapped in the hydrophobic structure during mixing are hindered from crystallizing; therefore, these molecules maintain a higher mobility compared to crystallized molecules. When a thin layer of the composite material is mechanically damaged, the mobile wax molecules can migrate and heal the defects to a certain extent. The general preparation of the composite is described and XRD analysis demonstrated that a certain share of wax molecules in the composite are hindered to crystallize. Furthermore, we show that the resulting material can recovery its repellent properties after surface damage.