Refine
Document Type
- Journal article (12)
- Conference proceeding (1)
Language
- English (13)
Has full text
- yes (13)
Is part of the Bibliography
- yes (13)
Institute
Publisher
- Elsevier (12)
- IEOM Society International (1)
The maintenance of railway infrastructure remains a challenge. Data acquisition technologies have evolved because of Industry 4.0, expanding the capabilities of predictive maintenance. Despite the advances, the potential of these emerging technologies has not been fully realised. This paper presents a technology selection framework in support of railway infrastructure predictive maintenance, which is based on qualitative methods. It consists of three stages, including the mapping of the infrastructure characteristics with the identified technologies, the evaluation of the most appropriate technologies, and the sourcing thereof. This presents the collective decision support output of the framework.
The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.
Maintenance is an increasingly complex and knowledge-intensive field. In order to address these challenges, assistance systems based on augmented, mixed, or virtual reality can be applied. Therefore, the objective of this paper is to present a framework that can be used to identify, select, and implement an assistance system based on reality technology in the maintenance environment. The development of the framework is based on a systematic literature review and subject matter expert interviews. The framework provides the best technological and economic solution in several steps. The validation of the framework is carried out through a case study.
Railway operators are being challenged by increasing complexity and safeguarding the availability of passenger rolling stock, bringing maintenance and especially emerging technologies into the focus. This paper presents a model for selection and implementation of Industry 4.0 technologies in rolling stock maintenance. The model consists of different stages and considers the main components of rolling stock, the related appropriate maintenance strategies and Industry 4.0 technologies considering the maturity level of the railway operators. Relevant criteria and main prerequisites of the technologies were identified. The model proposes relevant activities and was validated by industry experts.
The use of learning factories for education in maintenance concepts is limited, despite the important role maintenance plays in the effective operation of organizational assets. A training programme in a learning factory environment is presented where a combination of gamification, classroom training and learning factory applications is used to introduce students to the concepts of maintenance plan development, asset failure characteristics and the costs associated with maintenance decision-making. The programme included a practical task to develop a maintenance plan for different advanced manufacturing machines in a learning factory setting. The programme stretched over a four-day period and demonstrated how learning factories can be effectively utilized to teach management related concepts in an interdisciplinary team context, where participants had no, or very limited, previous exposure to these concepts.
This paper investigates the integration of quantum computing into smart maintenance, which allows integrated scheduling of maintenance and production to enhance decision-making within manufacturing environments. Uncoordination and the lack of integrated scheduling of maintenance and production plans lead to significant economic inefficiencies. A literature review revealed the gap in the integration of modern and newly emerging quantum computing algorithms and a three-step optimization approach is proposed. The paper showcases the feasibility of quantum computing for smart maintenance scheduling and illustrates a way of including quantum computing in complex integrated scheduling problems. The approach encompasses creating an integrated production and maintenance schedule via simulation-based optimization and metaheuristics and applying the quantum approximate optimization algorithm for prescheduling maintenance tasks.
In the context of Industry 4.0, intralogistics faces an increasingly complex and dynamic environment driven by a high level of product customisation and complex manufacturing processes. One approach to deal with these changing conditions is the decentralised and intelligent connectivity of intralogistics systems. However, wireless connectivity presents a major challenge in the industry due to strict requirements such as safety and real-time data transmission. In this context, the fifth generation of mobile communications (5G) is a promising technology to meet the requirements of safety-critical applications. Particularly, since 5G offers the possibility of establishing private 5G networks, also referred to as standalone non-public networks. Through their isolation from public networks, private 5G networks provide exclusive coverage for private organisations offering them high intrinsic network control and data security. However, 5G is still under development and is being gradually introduced in a continuous release process. This process lacks transparency regarding the performance of 5G in individual releases, complicating the successful adoption of 5G as an industrial communication. Additionally, the evaluation of 5G against the specified target performance is insufficient due to the impact of the environment and external interfering factors on 5G in the industrial environment. Therefore, this paper aims to develop a technical decision-support framework that takes a holistic approach to evaluate the practicality of 5G for intralogistics use cases by considering two fundamental stages. The first of these analyses technical parameters and characteristics of the use case to evaluate the theoretical feasibility of 5G. The second stage investigates the application's environment, which substantially impacts the practicality of 5G, for instance, the influence of surrounding materials. Finally, a case study validates the proposed framework by means of an autonomous mobile robot. As a result, the validation proves the proposed framework's applicability and shows the practicality of the autonomous mobile robot, when integrating it into a private 5G network testbed.
The increasing complexity and need for availability of automated guided vehicles (AGVs) pose challenges to companies, leading to a focus on new maintenance strategies. In this paper, a smart maintenance architecture based on a digital twin is presented to optimize the technical and economic effectiveness of AGV maintenance activities. To realize this, a literature review was conducted to identify the necessary requirements for Smart Maintenance and Digital Twins. The identified requirements were combined into modules and then integrated into an architecture. The architecture was evaluated on a real AGV on the battery as one of the critical components.
Parallel grippers offer multiple applications thanks to their flexibility. Their application field ranges from aerospace and automotive to medicine and communication technologies. However, the application of grippers has the problem of exhibition wear and errors during the execution of their operation. This affects the performance of the gripper. In this context, the remaining useful life (RUL) defines the remaining lifespan until failure for an asset at a particular time of operation occurs. The exact lifespan of an asset is uncertain, thus the RUL model and estimation must be derived from available sources of information. This paper presents a method for the estimation of the RUL for a two-jaw parallel gripper. After the introduction to the topic, an overview of existing literature and RUL methods are presented. Subsequently, the method for estimating the RUL of grippers is explained. Finally, the results are summarized and discussed before the outlook and further challenges are presented.
As part of the emerging Industry 4.0 movement, maintenance is increasingly being digitalized. This trend sees the realization of smart maintenance strategies and systems that allow organizations to take better control of their maintenance. The reality is that the maintenance approaches and systems that are currently in use at inner city public bus services are based on previous technological and industrialization methods. Smart maintenance and Industry 4.0 technologies can be used to optimize maintenance at inner city public bus services to support informed decision-making. This paper presents the development of a smart maintenance system for these organizations to minimize the downtime caused by unexpected breakdowns and ensure inner city buses operate reliably. Designing the smart maintenance system is done by considering the findings from an extensive literature review and the feedback from structured interviews with bus service representatives. The system validation is performed as a case study with an industry partner. For conducting the case study, a concept demonstrator is designed according to the defined system and addresses the main problem causing downtime of the buses at the industry partner. Tests are conducted with the demonstrator to verify the smart maintenance system's functionalities.