Refine
Document Type
- Conference Proceeding (5)
- Article (2)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Institute
- Informatik (7)
Publisher
- IEEE (3)
- ACM (1)
- Cornell Universiy (1)
- Springer International Publishing (1)
- Springer Science + Business Media B.V (1)
Microservices are a topic driven mainly by practitioners and academia is only starting to investigate them. Hence, there is no clear picture of the usage of Microservices in practice. In this paper, we contribute a qualitative study with insights into industry adoption and implementation of Microservices. Contrary to existing quantitative studies, we conducted interviews to gain a more in-depth understanding of the current state of practice. During 17 interviews with software professionals from 10 companies, we analyzed 14 service-based systems. The interviews focused on applied technologies, Microservices characteristics, and the perceived influence on software quality. We found that companies generally rely on well established technologies for service implementation, communication, and deployment. Most systems, however, did not exhibit a high degree of technological diversity as commonly expected with Microservices. Decentralization and product character were different for systems built for external customers. Applied DevOps practices and automation were still on a mediocre level and only very few companies strictly followed the you build it, you run it principle. The impact of Microservices on software quality was mainly rated as positive. While maintainability received the most positive mentions, some major issues were associated with security. We present a description of each case and summarize the most important findings of companies across different domains and sizes. Researchers may build upon our findings and take them into account when designing industry-focused methods.
Maintainability assurance techniques are used to control this quality attribute and limit the accumulation of potentially unknown technical debt. Since the industry state of practice and especially the handling of service- and microservice-based systems in this regard are not well covered in scientific literature, we created a survey to gather evidence for a) used processes, tools, and metrics in the industry, b) maintainability-related treatment of systems based on service orientation, and c) influences on developer satisfaction w.r.t. maintainability. 60 software professionals responded to our online questionnaire. The results indicate that using explicit and systematic techniques has benefits for maintainability. The more sophisticated the applied methods the more satisfied participants were with the maintainability of their software while no link to a hindrance in productivity could be established. Other important findings were the absence of architecture-level evolvability control mechanisms as well as a significant neglect of service-oriented particularities for quality assurance. The results suggest that industry has to improve its quality control in these regards to avoid problems with long living service-based software systems.
While the recently emerged microservices architectural style is widely discussed in literature, it is difficult to find clear guidance on the process of refactoring legacy applications. The importance of the topic is underpinned by high costs and effort of a refactoring process which has several other implications, e.g. overall processes (DevOps) and team structure. Software architects facing this challenge are in need of selecting an appropriate strategy and refactoring technique. One of the most discussed aspects in this context is finding the right service granularity to fully leverage the advantages of a microservices architecture. This study first discusses the notion of architectural refactoring and subsequently compares 10 existing refactoring approaches recently proposed in academic literature. The approaches are classified by the underlying decomposition technique and visually presented in the form of a decision guide for quick reference. The review yielded a variety of strategies to break down a monolithic application into independent services. With one exception, most approaches are only applicable under certain conditions. Further concerns are the significant amount of input data some approaches require as well as limited or prototypical tool support.
To remain competitive in a fast changing environment, many companies started to migrate their legacy applications towards a Microservices architecture. Such extensive migration processes require careful planning and consideration of implications and challenges likewise. In this regard, hands-on experiences from industry practice are still rare. To fill this gap in scientific literature, we contribute a qualitative study on intentions, strategies, and challenges in the context of migrations to Microservices. We investigated the migration process of 14 systems across different domains and sizes by conducting 16 in-depth interviews with software professionals from 10 companies. Along with a summary of the most important findings, we present a separate discussion of each case. As primary migration drivers, maintainability and scalability were identified. Due to the high complexity of their legacy systems, most companies preferred a rewrite using current technologies over splitting up existing code bases. This was often caused by the absence of a suitable decomposition approach. As such, finding the right service cut was a major technical challenge, next to building the necessary expertise with new technologies. Organizational challenges were especially related to large, traditional companies that simultaneously established agile processes. Initiating a mindset change and ensuring smooth collaboration between teams were crucial for them. Future research on the evolution of software systems can in particular profit from the individual cases presented.
While Microservices promise several beneficial characteristics for sustainable long-term software evolution, little empirical research covers what concrete activities industry applies for the evolvability assurance of Microservices and how technical debt is handled in such systems. Since insights into the current state of practice are very important for researchers, we performed a qualitative interview study to explore applied evolvability assurance processes, the usage of tools, metrics, and patterns, as well as participants’ reflections on the topic. In 17 semi-structured interviews, we discussed 14 different Microservice-based systems with software professionals from 10 companies and how the sustainable evolution of these systems was ensured. Interview transcripts were analyzed with a detailed coding system and the constant comparison method.
We found that especially systems for external customers relied on central governance for the assurance. Participants saw guidelines like architectural principles as important to ensure a base consistency for evolvability. Interviewees also valued manual activities like code review, even though automation and tool support was described as very important. Source code quality was the primary target for the usage of tools and metrics. Despite most reported issues being related to Architectural Technical Debt (ATD), our participants did not apply any architectural or service-oriented tools and metrics. While participants generally saw their Microservices as evolvable, service cutting and finding an appropriate service granularity with low coupling and high cohesion were reported as challenging. Future Microservices research in the areas of evolution and technical debt should take these findings and industry sentiments into account.
The euphoria around microservices has decreased over the years, but the trend of modernizing legacy systems to this novel architectural style is unbroken to date. A variety of approaches have been proposed in academia and industry, aiming to structure and automate the often long-lasting and cost-intensive migration journey. However, our research shows that there is still a need for more systematic guidance. While grey literature is dominant for knowledge exchange among practitioners, academia has contributed a significant body of knowledge as well, catching up on its initial neglect. A vast number of studies on the topic yielded novel techniques, often backed by industry evaluations. However, practitioners hardly leverage these resources. In this paper, we report on our efforts to design an architecture-centric methodology for migrating to microservices. As its main contribution, a framework provides guidance for architects during the three phases of a migration. We refer to methods, techniques, and approaches based on a variety of scientific studies that have not been made available in a similarly comprehensible manner before. Through an accompanying tool to be developed, architects will be in a position to systematically plan their migration, make better informed decisions, and use the most appropriate techniques and tools to transition their systems to microservices.
Context
Microservices as a lightweight and decentralized architectural style with fine-grained services promise several beneficial characteristics for sustainable long-term software evolution. Success stories from early adopters like Netflix, Amazon, or Spotify have demonstrated that it is possible to achieve a high degree of flexibility and evolvability with these systems. However, the described advantageous characteristics offer no concrete guidance and little is known about evolvability assurance processes for microservices in industry as well as challenges in this area. Insights into the current state of practice are a very important prerequisite for relevant research in this field.
Objective
We therefore wanted to explore how practitioners structure the evolvability assurance processes for microservices, what tools, metrics, and patterns they use, and what challenges they perceive for the evolvability of their systems.
Method
We first conducted 17 semi-structured interviews and discussed 14 different microservice-based systems and their assurance processes with software professionals from 10 companies. Afterwards, we performed a systematic grey literature review (GLR) and used the created interview coding system to analyze 295 practitioner online resources.
Results
The combined analysis revealed the importance of finding a sensible balance between decentralization and standardization. Guidelines like architectural principles were seen as valuable to ensure a base consistency for evolvability and specialized test automation was a prevalent theme. Source code quality was the primary target for the usage of tools and metrics for our interview participants, while testing tools and productivity metrics were the focus of our GLR resources. In both studies, practitioners did not mention architectural or service-oriented tools and metrics, even though the most crucial challenges like Service Cutting or Microservices Integration were of an architectural nature.
Conclusions
Practitioners relied on guidelines, standardization, or patterns like Event-Driven Messaging to partially address some reported evolvability challenges. However, specialized techniques, tools, and metrics are needed to support industry with the continuous evaluation of service granularity and dependencies. Future microservices research in the areas of maintenance, evolution, and technical debt should take our findings and the reported industry sentiments into account.