Refine
Document Type
- Journal article (16)
- Conference proceeding (15)
- Book chapter (2)
Is part of the Bibliography
- yes (33)
Institute
- Informatik (33)
Publisher
- Elsevier (9)
- Springer (9)
- IEEE (4)
- MDPI (4)
- Hochschule Reutlingen (3)
- Cuvillier Verlag (1)
- Frontiers Research Foundation (1)
- IOP Publishing (1)
- Università Politecnica delle Marche (1)
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
Thematic issue on human-centred ambient intelligence: cognitive approaches, reasoning and learning
(2017)
This editorial presents advances on human-centred Ambient Intelligence applications which take into account cognitive issues when modelling users (i.e. stress, attention disorders), and learn users’ activities/preferences and adapt to them (i.e. at home, driving a car). These papers also show AmI applications in health and education, which make them even more valuable for the general society.
Respiratory diseases are leading causes of death and disability in the world. The recent COVID-19 pandemic is also affecting the respiratory system. Detecting and diagnosing respiratory diseases requires both medical professionals and the clinical environment. Most of the techniques used up to date were also invasive or expensive.
Some research groups are developing hardware devices and techniques to make possible a non-invasive or even remote respiratory sound acquisition. These sounds are then processed and analysed for clinical, scientific, or educational purposes.
We present the literature review of non-invasive sound acquisition devices and techniques.
The results are about a huge number of digital tools, like microphones, wearables, or Internet of Thing devices, that can be used in this scope.
Some interesting applications have been found. Some devices make easier the sound acquisition in a clinic environment, but others make possible daily monitoring outside that ambient. We aim to use some of these devices and include the non-invasive recorded respiratory sounds in a Digital Twin system for personalized health.
Sustainable technologies are being increasingly used in various areas of human life. While they have a multitude of benefits, they are especially useful in health monitoring, especially for certain groups of people, such as the elderly. However, there are still several issues that need to be addressed before its use becomes widespread. This work aims to clarify the aspects that are of great importance for increasing the acceptance of the use of this type of technology in the elderly. In addition, we aim to clarify whether the technologies that are already available are able to ensure acceptable accuracy and whether they could replace some of the manual approaches that are currently being used. A two-week study with people 65 years of age and over was conducted to address the questions posed here, and the results were evaluated. It was demonstrated that simplicity of use and automatic functioning play a crucial role. It was also concluded that technology cannot yet completely replace traditional methods such as questionnaires in some areas. Although the technologies that were tested were classified as being “easy to use”, the elderly population in the current study indicated that they were not sure that they would use these technologies regularly in the long term because the added value is not always clear, among other issues. Therefore, awareness-raising must take place in parallel with the development of technologies and services.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.
Comparison of sleep characteristics measurements: a case study with a population aged 65 and above
(2020)
Good sleep is crucial for a healthy life of every person. Unfortunately, its quality often decreases with aging. A common approach to measuring the sleep characteristics is based on interviews with the subjects or letting them fill in a daily questionnaire and afterward evaluating the obtained data. However, this method has time and personal costs for the interviewer and evaluator of responses. Therefore, it would be important to execute the collection and evaluation of sleep characteristics automatically. To do that, it is necessary to investigate the level of agreement between measurements performed in a traditional way using questionnaires and measurements obtained using electronic monitoring devices. The study presented in this manuscript performs this investigation, comparing such sleep characteristics as "time going to bed", "total time in bed", "total sleep time" and "sleep efficiency". A total number of 106 night records of elderly persons (aged 65+) were analyzed. The results achieved so far reveal the fact that the degree of agreement between the two measurement methods varies substantially for different characteristics, from 31 minutes of mean difference for "time going to bed" to 77 minutes for "total sleep time". For this reason, a direct exchange of objective and subjective measuring methods is currently not possible.
Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming.
In previous studies, we used a method for detecting stress that was based exclusively on heart rate and ECG for differentiation between such situations as mental stress, physical activity, relaxation, and rest. As a response of the heart to these situations, we observed different behavior in the Root Mean Square of the Successive differences heartbeats (RMSSD). This study aims to analyze Virtual Reality via a virtual reality headset as an effective stressor for future works. The value of the Root Mean Square of the Successive Differences is an important marker for the parasympathetic effector on the heart and can provide information about stress. For these measurements, the RR interval was collected using a breast belt. In these studies, we can observe the Root Mean Square of the successive differences heartbeats. Additional sensors for the analysis were not used. We conducted experiments with ten subjects that had to drive a simulator for 25 minutes using monitors and 25 minutes using virtual reality headset. Before starting and after finishing each simulation, the subjects had to complete a survey in which they had to describe their mental state. The experiment results show that driving using virtual reality headset has some influence on the heart rate and RMSSD, but it does not significantly increase the stress of driving.
Vehicles have been so far improved in terms of energy-efficiency and safety mainly by optimising the engine and the power train. However, there are opportunities to increase energy-efficiency and safety by adapting the individual driving behaviour in the given driving situation. In this paper, an improved rule match algorithm is introduced, which is used in the expert system of a human-centred driving system. The goal of the driving system is to optimise the driving behaviour in terms of energy-efficiency and safety by giving recommendations to the driver. The improved rule match algorithm checks the incoming information against the driving rules to recognise any breakings of a driving rule. The needed information is obtained by monitoring the driver, the current driving situation as well as the car, using in-vehicle sensors and serial-bus systems. On the basis of the detected broken driving rules, the expert system will create individual recommendations in terms of energy-efficiency and safety, which will allow eliminating bad driving habits, while considering the driver needs.