Refine
Document Type
- Conference Proceeding (33)
- Article (5)
- Part of a Book (5)
- Doctoral Thesis (1)
Is part of the Bibliography
- yes (44)
Institute
- Informatik (44)
Publisher
- Springer (17)
- Gesellschaft für Informatik (8)
- IEEE (7)
- RWTH (3)
- Riga Technical University Press (3)
- RWTH Aachen (2)
- Elsevier (1)
- Riga Technical University (1)
- SCITEPRESS (1)
Analysis and planning of Enterprise Architectures (EA) is a complex task for stakeholders. The change of one architecture element has impact on multiple other elements because of manifold relationships and interactions between them. The interactive cockpit approach presented in this paper supports stakeholders planning and analyzing EAs and to tackle the intrinsic complexity. This approach supplies a cockpit with multiple viewpoints to put relevant information side-by-side without losing the context combined with interaction functionality. In this paper, we develop such cockpit starting with relevant use cases, describing a potential design based on well-established foundations in EA modeling, and outline an exemplary usage scenario.
Analysis is an important part of the enterprise architecture management process. Prior to decisions regarding transformation of the enterprise architecture, the current situation and the outcomes of alternative action plans have to be analysed. Many analysis approaches have been proposed by researchers and current enterprise architecture management tools implement analysis functionalities. However, few work has been done structuring and classifying enterprise architecture analysis approaches. This paper collects and extends existing classification schemes, presenting a framework for enterprise architecture analysis classification. For evaluation, a collection of enterprise architecture analysis approaches has been classified based on this framework. As a result, the description of these approaches has been assessed, a common set of important categories for enterprise architecture analysis classification has been derived and suggestions for further development are drawn.
Modeling interactive Enterprise Architecture visualizations: an extended architecture description
(2018)
Enterprise architectures consist of a multitude of architecture elements, which relate in manifold ways to each other. Due to the high number of relationships between these elements, architectural analysis mechanisms are essential for all stakeholders to keep track and to work out relevant model characteristics. In practice EAs are often analyzed using visualizations by hand. However, the visualizations are often static and there are only few interaction possibilities. As a result, new visualizations have to be created or configured by experts if information demands change. In addition, hardly any tools are used for analysis of complex model characteristics. In this article we introduce an extended conceptualization of the architecture description that defines the structure of interactive visualizations and the integration of further tools to flexibly respond to the information demands of stakeholders. In addition, we develop a so-called Architecture Cockpit that realizes the extended conceptualization in a prototype. At the end we demonstrate and evaluate our approach through a practical test in a company in the finance and insurance industry.
Big Data und Cloud Systeme werden zunehmend von mobilen, benutzerzentrierten und agil veränderbaren Informationssystemen im Kontext von digitalen sozialen Netzwerken genutzt. Metaphern aus der Biologie für lebendige und selbstheilende Systeme und Umgebungen liefern die Basis für intelligente adaptive Informationssysteme und für zugehörige serviceorientierte digitale Unternehmensarchitekturen. Wir berichten über unsere Forschungsarbeiten über Strukturen und Mechanismen adaptiver digitaler Unternehmensarchitekturen für die Entwicklung und Evolution von serviceorientierten Ökosystemen und deren Technologien wie Big Data, Services & Cloud Computing, Web Services und Semantikunterstützung. Für unsere aktuellen Forschungsarbeiten nutzen wir praxisrelevante SmartLife Szenarien für die Entwicklung, Wartung und Evolution zukunftsgerechter serviceorientierter Informationssysteme. Diese Systeme nutzen eine stark wachsende Zahl externer und interner Services und fokussieren auf die Besonderheiten der Weiterentwicklung der Informationssysteme für integrierte Big Data und Cloud Kontexte. Unser Forschungsansatz beschäftigt sich mit der systematischen und ganzheitlichen Modellbildung adaptiver digitaler Unternehmensarchitekturen - gemäß standardisierter Referenzmodelle und auf Standards aufsetzenden Referenzarchitekturen, die für besondere Einsatzszenarien auch bei kleineren Anwendungskontexten oder an neue Kontexte einfacher adaptiert werden können. Um Semantik-gestützte Analysen zur Entscheidungsunterstützung von System- und Unternehmensarchitekten zu ermöglichen, erweitern wir unser bisheriges Referenzmodell für ITUnternehmensarchitekturen ESARC – Enterprise Services Architecture Reference Cube – um agile Mechanismen der Adaption und Konsistenzbehandlung sowie die zugehörigen Metamodelle und Ontologien für Digitale Enterprise Architekturen um neue Aspekte wie Big Data und Cloud Kontexte.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology and enterprise systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates collaborative decision mechanisms for adaptive digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support.
Enterprise Architectures (EA) consist of a multitude of architecture elements, which relate in manifold ways to each other. As the change of a single element hence impacts various other elements, mechanisms for architecture analysis are important to stakeholders. The high number of relationships aggravates architecture analysis and makes it a complex yet important task. In practice EAs are often analyzed using visualizations. This article contributes to the field of visual analytics in enterprise architecture management (EAM) by reviewing how state-of-the-art software platforms in EAM support stakeholders with respect to providing and visualizing the “right” information for decision-making tasks. We investigate the collaborative decision-making process in an experiment with master students using professional EAM tools by developing a research study. We evaluate the students’ findings by comparing them with the experience of an enterprise architect.
Enterprise Architectures (EA) consists of many architecture elements, which stand in manifold relationships to each other. Therefore Architecture Analysis is important and very difficult for stakeholders. Due changing an architecture element has impacts on other elements different stakeholders are involved. In practice EAs are often analyzed using visualizations. This article aims at contributing to the field of visual analytics in EAM by analyzing how state of-the-art software platforms in EAM support stakeholders with respect to providing and visualizing the “right” information for decision-making tasks. We investigate the collaborative decision-making process in an experiment with master students using professional EAM tools by developing a research study and accomplishing them in a master’s level class with students.
Digital technologies are main strategic drivers for digitalization and offer ubiquitous data availability, unlimited connectivity, and massive processing power for a fundamentally changing business. This leads to the development and application of intelligent digital systems. The current state of research and practice of architecting digital systems and services lacks a solid methodological foundation that fully accommodates all requirements linked to efficient and effective development of digital systems in organizations. Research presented in this paper addresses the question, how management of complexity in digital systems and architectures can be supported from a methodological perspective. In this context, the current focus is on a better understanding of the causes of increased complexity and requirements to methodological support. For this purpose, we take an enterprise architecture perspective, i.e. how the introduction of digital systems affects the complexity of EA. Two industrial case studies and a systematic literature analysis result in the proposal of an extended Digital Enterprise Architecture Cube as framework for future methodical support.
Digitization fosters the development of IT environments with many rather small structures, like Internet of Things (IoT), microservices, or mobility systems. They are needed to support flexible and agile digitized products and services. The goal is to create service-oriented enterprise architectures (EA) that are self optimizing and resilient. The present research paper investigates methods for decision-making concerning digitization architectures for Internet of Things and microservices. They are based on evolving enterprise architecture reference models and state of the art elements for architectural engineering for microgranular systems. Decision analytics in this field becomes increasingly complex and decision support, particularly for the development and evolution of sustainable enterprise architectures, is sorely needed. The challenging of the decision processes can be supported with in a more flexible and intuitive way by an architecture management cockpit.
Intelligent systems and services are the strategic targets of many current digitalization efforts and part of massive digital transformations based on digital technologies with artificial intelligence. Digital platform architectures and ecosystems provide an essential base for intelligent digital systems. The paper raises an important question: Which development paths are induced by current innovations in the field of artificial intelligence and digitalization for enterprise architectures? Digitalization disrupts existing enterprises, technologies, and economies and promotes the architecture of cognitive and open intelligent environments. This has a strong impact on new opportunities for value creation and the development of intelligent digital systems and services. Digital technologies such as artificial intelligence, the Internet of Things, service computing, cloud computing, blockchains, big data with analysis, mobile systems, and social business network systems are essential drivers of digitalization. We investigate the development of intelligent digital systems supported by a suitable digital enterprise architecture. We present methodological advances and an evolutionary path for architectures with an integral service and value perspective to enable intelligent systems and services that effectively combine digital strategies and digital architectures with artificial intelligence.