Refine
Document Type
- Journal article (6)
Language
- English (6)
Has full text
- yes (6)
Is part of the Bibliography
- yes (6)
Institute
- Life Sciences (6)
Publisher
- MDPI (5)
- American Chemical Society (1)
The chemical synthesis of polysiloxanes from monomeric starting materials involves a series of hydrolysis, condensation and modification reactions with complex monomeric and oligomeric reaction mixtures. Real-time monitoring and precise process control of the synthesis process is of great importance to ensure reproducible intermediates and products and can readily be performed by optical spectroscopy. In chemical reactions involving rapid and simultaneous functional group transformations and complex reaction mixtures, however, the spectroscopic signals are often ambiguous due to overlapping bands, shifting peaks and changing baselines. The univariate analysis of individual absorbance signals is hence often only of limited use. In contrast, batch modelling based on the multivariate analysis of the time course of principal components (PCs) derived from the reaction spectra provides a more efficient tool for real time monitoring. In batch modelling, not only single absorbance bands are used but information over a broad range of wavelengths is extracted from the evolving spectral fingerprints and used for analysis. Thereby, process control can be based on numerous chemical and morphological changes taking place during synthesis. “Bad” (or abnormal) batches can quickly be distinguished from “normal” ones by comparing the respective reaction trajectories in real time. In this work, FTIR spectroscopy was combined with multivariate data analysis for the in-line process characterization and batch modelling of polysiloxane formation. The synthesis was conducted under different starting conditions using various reactant concentrations. The complex spectral information was evaluated using chemometrics (principal component analysis, PCA). Specific spectral features at different stages of the reaction were assigned to the corresponding reaction steps. Reaction trajectories were derived based on batch modelling using a wide range of wavelengths. Subsequently, complexity was reduced again to the most relevant absorbance signals in order to derive a concept for a low-cost process spectroscopic set-up which could be used for real-time process monitoring and reaction control.
Monodisperse polystyrene spheres are functional materials with interesting properties, such as high cohesion strength, strong adsorptivity, and surface reactivity. They have shown a high application value in biomedicine, information engineering, chromatographic fillers, supercapacitor electrode materials, and other fields. To fully understand and tailor particle synthesis, the methods for characterization of their complex 3D morphological features need to be further explored. Here we present a chemical imaging study based on three-dimensional confocal Raman microscopy (3D-CRM), scanning electron microscopy (SEM), focused ion beam (FIB), diffuse reflectance infrared Fourier transform (DRIFT), and nuclear magnetic resonance (NMR) spectroscopy for individual porous swollen polystyrene/poly (glycidyl methacrylate-co-ethylene di-methacrylate) particles. Polystyrene particles were synthesized with different co-existing chemical entities, which could be identified and assigned to distinct regions of the same particle. The porosity was studied by a combination of SEM and FIB. Images of milled particles indicated a comparable porosity on the surface and in the bulk. The combination of standard analytical techniques such as DRIFT and NMR spectroscopies yielded new insights into the inner structure and chemical composition of these particles. This knowledge supports the further development of particle synthesis and the design of new strategies to prepare particles with complex hierarchical architectures.
Metalworking fluids (MWFs) are widely used to cool and lubricate metal workpieces during processing to reduce heat and friction. Extending a MWF’s service life is of importance from both economical and ecological points of view. Knowledge about the effects of processing conditions on the aging behavior and reliable analytical procedures are required to properly characterize the aging phenomena. While so far no quantitative estimations of ageing effects on MWFs have been described in the literature other than univariate ones based on single parameter measurements, in the present study we present a simple spectroscopy-based set-up for the simultaneous monitoring of three quality parameters of MWF and a mathematical model relating them to the most influential process factors relevant during use. For this purpose, the effects of MWF concentration, pH and nitrite concentration on the droplet size during aging were investigated by means of a response surface modelling approach. Systematically varied model MWF fluids were characterized using simultaneous measurements of absorption coefficients µa and effective scattering coefficients µ’s. Droplet size was determined via dynamic light scattering (DLS) measurements. Droplet size showed non-linear dependence on MWF concentration and pH, but the nitrite concentration had no significant effect. pH and MWF concentration showed a strong synergistic effect, which indicates that MWF aging is a rather complex process. The observed effects were similar for the DLS and the µ’s values, which shows the comparability of the methodologies. The correlations of the methods were R2c = 0.928 and R2P = 0.927, as calculated by a partial least squares regression (PLS-R) model. Furthermore, using µa, it was possible to generate a predictive PLS-R model for MWF concentration (R2c = 0.890, R2P = 0.924). Simultaneous determination of the pH based on the µ’s is possible with good accuracy (R²c = 0.803, R²P = 0.732). With prior knowledge of the MWF concentration using the µa-PLS-R model, the predictive capability of the µ’s-PLS-R model for pH was refined (10 wt%: R²c = 0.998, R²p = 0.997). This highlights the relevance of the combined measurement of µa and µ’s. Recognizing the synergistic nature of the effects of MWF concentration and pH on the droplet size is an important prerequisite for extending the service life of an MWF in the metalworking industry. The presented method can be applied as an in-process analytical tool that allows one to compensate for ageing effects during use of the MWF by taking appropriate corrective measures, such as pH correction or adjustment of concentration.
Rapid and robust quality monitoring of the composition of meat pastes is of fundamental importance in processing meat and sausage products. Here, an in-line near-infrared spectroscopy/micro-electro-mechanical-system-(MEMS)-based approach, combined with multivariate data analysis, was used for measuring the constituents fat, protein, water, and salt in meat pastes within a typical range of meat paste recipes. The meat pastes were spectroscopically characterized in-line with a novel process analyzer prototype. By integrating salt content in the calibration set, robust predictive PLSR models of high accuracy (R2 > 0.81) were obtained that take interfering matrix effects of the minor and NIR-inactive meat paste recipe component “salt” into account as well. The nonlinear blending behavior of salt concentration on the spectral features of meat pastes is discussed based on a designed mixture experiment with four systematically varied components.
Hybrid organic/inorganic nanocomposites combine the distinct properties of the organic polymer and the inorganic filler, resulting in overall improved system properties. Monodisperse porous hybrid beads consisting of tetraethylene pentamine functionalized poly(glycidyl methacrylateco-ethylene glycol dimethacrylate) particles and silica nanoparticles (SNPs) were synthesized under Stoeber sol-gel process conditions. A wide range of hybrid organic/silica nanocomposite materials with different material properties was generated. The effects of n(H2O)/n(TEOS) and c(NH3 ) on the hybrid bead properties particle size, SiO2 content, median pore size, specific surface area, pore volume and size of the SNPs were studied. Quantitative models with a high robustness and predictive power were established using a statistical and systematic approach based on response surface methodology. It was shown that the material properties depend in a complex way on the process factor settings and exhibit non-linear behaviors as well as partly synergistic interactions between the process factors. Thus, the silica content, median pore size, specific surface area, pore volume and size of the SNPs are non-linearly dependent on the water-to-precursor ratio. This is attributed to the effect of the water-to-precursor ratio on the hydrolysis and condensation rates of TEOS. A possible mechanism of SNP incorporation into the porous polymer network is discussed.
Monodisperse porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) particles are widely applied in different fields, as their pore properties can be influenced and functionalization of the epoxy group is versatile. However, the adjustment of parameters which control morphology and pore properties such as pore volume, pore size and specific surface area is scarcely available. In this work, the effects of the process factors monomer:porogen ratio, GMA:EDMA ratio and composition of the porogen mixture on the response variables pore volume, pore size and specific surface area are investigated using a face centered central composite design. Non-linear effects of the process factors and second order interaction effects between them were identified. Despite the complex interplay of the process factors, targeted control of the pore properties was possible. For each response a response surface model was derived with high predictive power (all R2 predicted > 0.85). All models were tested by four external validation experiments and their validity and predictive power was demonstrated.