Refine
Document Type
- Journal article (6)
- Conference proceeding (4)
- Doctoral Thesis (1)
Is part of the Bibliography
- yes (11)
Institute
- ESB Business School (10)
- Technik (1)
Publisher
- Elsevier (2)
- Springer (2)
- Stellenbosch University (2)
- VDI Fachmedien (2)
- De Gruyter (1)
- LIT Verlag (1)
- MDPI (1)
What does the factory of tomorrow have to offer for companies? This question and its aspects are the focus of many actual articles and publications. According to Gartner digital twins, one of 2017 strategic technology trends will play a big role for the future of manufacturing. At the moment digital twins are gaining more importance for the industrial application. If companies want to be competitive in the future they have to implement the digital twin in the factories of today. Therefore this paper provides a basic overview of the concept of the smart factory and its requirements. In addition, digital twins are identified as a necessary concept for the evolution of the factory of today.
It is expected that ongoing digitalisation will drive the merger between the manufacturing world and the internet world, possibly leading to a next industrial revolution, currently called “Industry 4.0”. The driving forces behind this development are new business opportunities and competition advantages arising from mass production customisation as well as rapid individual product development and manufacturing. Key factors of the development towards Industry 4.0 are discussed. Threats and opportunities arising from these developments for future production are discussed. Actual examples from real-time customized manufacturing of consumer products are given. As mechatronic systems and industrial robots are widely used in manufacturing and in particular in assembly, it is discussed how they can be connected to and used in digitalised industrial systems. Different examples of remote controlled systems are presented, like remote controlled KUKA robot for handling and quality control, PLC-controlled equipment, drive systems, FESTO handling system and others. The architecture of an assembly cell is presented, where industrial robots are set-up for batch-one production or can directly receive control / production information on-line and in real-time over the factory network. Methods for remote maintenance and monitoring of systems over the internet and production operator support over the internet are presented as well.
The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.
5G-Campusnetze sind vielversprechende Umgebungen für industrielle Anwendungen in Produktion und Intralogistik. Diese erreichen jedoch bisher nicht die versprochenen Leistungen, um intralogistischen Anwendungen das volle Potenzial von 5G bieten zu können. Die im Rahmen des Projekts 5G4KMU erhobenen und in diesem Beitrag vorgestellten Leistungsmessungen dienen zur Evaluierung der derzeitigen Praxistauglichkeit von 5G-Campusnetzen.
Development of an indoor positioning system to create a digital shadow of production plant layouts
(2023)
The objective of this dissertation is to develop an indoor positioning system that allows the creation of a digital shadow of the plant layout in order to continuously represent the actual state of the physical layout in the virtual space. In order to define the requirements for such a system, potential stakeholders who could benefit from a digital shadow in the context of the plant layout were analysed. In order to generate added value for their work, the requirements were derived from their perspective. As the core of an indoor positioning system is the sensory aspect to capture the physical layout parameters, different potential technologies were compared and evaluated in terms of their suitability for this particular application. Derived from this analysis, the selected concept is based on the use of a pan-tilt-zoom (PTZ) camera in combination with fiducial markers. In order to determine specific camera parameters, a series of experiments were conducted which were necessary to develop the measurement method as well as the mathematical calculation method and coordinate transformation for the determination of poses (positions and angular orientations) of the respective facilities in the plant. In addition, an experimental validation was performed to ensure that the limit values for individual parameters determined in the requirements analysis can be met.
Das regelmäßige Schmieren von Maschinen verhindert Schäden, reduziert Ausfallzeiten und vermeidet Reparaturkosten. Schmiervorgänge werden jedoch oft unzureichend dokumentiert. Für die Überwachung manueller Schmierprozesse an Maschinen wird daher eine Smart-Maintenance-Lösung aufgebaut. Zusätzlich wird eine intelligente Fettpresse als cyber-physisches System entwickelt. Dadurch lassen sich Schmiervorgänge transparent dokumentieren und Fehlschmierungen verhindern.
The market for indoor positioning systems for a variety of applications has grown strongly in recent years. A wide range of systems is available, varying considerably in terms of accuracy, price and technology used. The suitability of the systems is highly dependent on the intended application. This paper presents a concept to use a single low-cost PTZ camera in combination with fiducial markers for indoor position and orientation determination. The intended use case is to capture a plant layout consisting of position, orientation and unique identity of individual facilities. Important factors to consider for the selection of a camera have been identified and the transformation of the marker pose in camera coordinates into a selectable plant coordinate system is described. The concept is illustrated by an exemplary practical implementation and its results.
Global, competitive markets which are characterised by mass customisation and rapidly changing customer requirements force major changes in production styles and the configuration of manufacturing systems. As a result, factories may need to be regularly adapted and optimised to meet short-term requirements. One way to optimise the production process is the adaptation of the plant layout to the current or expected order situation. To determine whether a layout change is reasonable, a model of the current layout is needed. It is used to perform simulations and in the case of a layout change it serves as a basis for the reconfiguration process. To aid the selection of possible measurement systems, a requirements analysis was done to identify the important parameters for the creation of a digital shadow of a plant layout. Based on these parameters, a method is proposed for defining limit values and specifying exclusion criteria. The paper thus contributes to the development and application of systems that enable an automatic synchronisation of the real layout with the digital layout.
Mobile Roboter sind entscheidend für die automatisierte Intralogistik der Industrie 4.0. Eine sichere drahtlose Anbindung an Flottenmanager oder Steuerungssysteme ist essenziell. Private 5G-Campusnetzwerke mit lizenzierten Frequenzen gelten als vielversprechende Lösung. Aus diesem Grund beleuchtet der Beitrag die Grundlagen der 5G-Technologie für mobile Roboter sowie die aktuelle Leistungsfähigkeit von privaten 5G-Campusnetzwerken anhand erhobener Messungen.
The fifth generation of mobile communication (5G) is a wireless technology developed to provide reliable, fast data transmission for industrial applications, such as autonomous mobile robots and connect cyber-physical systems using Internet of Things (IoT) sensors. In this context, private 5G networks enable the full performance of industrial applications built on dedicated 5G infrastructures. However, emerging wireless communication technologies such as 5G are a complex and challenging topic for training in learning factories, often lacking physical or visual interaction. Therefore, this paper aims to develop a real-time performance monitoring system of private 5G networks and different industrial 5G devices to visualise the performance and impact factors influencing 5G for students and future connectivity experts. Additionally, this paper presents the first long-term measurements of private 5G networks and shows the performance gap between the actual and targeted performance of private 5G networks.