Refine
Document Type
- Conference Proceeding (29)
- Article (4)
- Part of a Book (1)
- Doctoral Thesis (1)
Language
- English (35)
Is part of the Bibliography
- yes (35)
Institute
- Informatik (35)
Publisher
- Springer (10)
- IEEE (9)
- ACM (4)
- SCITEPRESS (2)
- Cornell Universiy (1)
- Gesellschaft für Informatik (1)
- IBM Research Division (1)
- PeerJ (1)
- RWTH (1)
- RWTH Aachen (1)
Real Time Charging (RTC) applications that reside in the telecommunications domain have the need for extremely fast database transactions. Today´s providers rely mostly on in-memory databases for this kind of information processing. A flexible and modular benchmark suite specifically designed for this domain provides a valuable framework to test the performance of different DB candidates. Besides a data and a load generator, the suite also includes decoupled database connectors and use case components for convenient customization and extension. Such easily produced test results can be used as guidance for choosing a subset of candidates for further tuning/testing and finally evaluating the database most suited to the chosen use cases. This is why our benchmark suite can be of value for choosing databases for RTC use cases.
Several studies analyzed existing Web APIs against the constraints of REST to estimate the degree of REST compliance among state-of-the-art APIs. These studies revealed that only a small number of Web APIs are truly RESTful. Moreover, identified mismatches between theoretical REST concepts and practical implementations lead us to believe that practitioners perceive many rules and best practices aligned with these REST concepts differently in terms of their importance and impact on software quality. We therefore conducted a Delphi study in which we confronted eight Web API experts from industry with a catalog of 82 REST API design rules. For each rule, we let them rate its importance and software quality impact. As consensus, our experts rated 28 rules with high, 17 with medium, and 37 with low importance. Moreover, they perceived usability, maintainability, and compatibility as the most impacted quality attributes. The detailed analysis revealed that the experts saw rules for reaching Richardson maturity level 2 as critical, while reaching level 3 was less important. As the acquired consensus data may serve as valuable input for designing a tool-supported approach for the automatic quality evaluation of RESTful APIs, we briefly discuss requirements for such an approach and comment on the applicability of the most important rules.
Continuous refactoring is necessary to maintain source code quality and to cope with technical debt. Since manual refactoring is inefficient and error prone, various solutions for automated refactoring have been proposed in the past. However, empirical studies have shown that these solutions are not widely accepted by software developers and most refactorings are still performed manually. For example, developers reported that refactoring tools should support functionality for reviewing changes. They also criticized that introducing such tools would require substantial effort for configuration and integration into the current development environment.
In this paper, we present our work towards the Refactoring-Bot, an autonomous bot that integrates into the team like a human developer via the existing version control platform. The bot automatically performs refactorings to resolve code smells and presents the changes to a developer for asynchronous review via pull requests. This way, developers are not interrupted in their workflow and can review the changes at any time with familiar tools. Proposed refactorings can then be integrated into the code base via the push of a button. We elaborate on our vision, discuss design decisions, describe the current state of development, and give an outlook on planned development and research activities.
Context: Fast moving markets and the age of digitization require that software can be quickly changed or extended with new features. The associated quality attribute is referred to as evolvability: the degree of effectiveness and efficiency with which a system can be adapted or extended. Evolvability is especially important for software with frequently changing requirements, e.g. internet-based systems. Several evolvability-related benefits were arguably gained with the rise of service-oriented computing (SOC) that established itself as one of the most important paradigms for distributed systems over the last decade. The implementation of enterprise-wide software landscapes in the style of service-oriented architecture (SOA) prioritizes loose coupling, encapsulation, interoperability, composition, and reuse. In recent years, microservices quickly gained in popularity as an agile, DevOps-focused, and decentralized service-oriented variant with fine-grained services. A key idea here is that small and loosely coupled services that are independently deployable should be easy to change and to replace. Moreover, one of the postulated microservices characteristics is evolutionary design.
Problem Statement: While these properties provide a favorable theoretical basis for evolvable systems, they offer no concrete and universally applicable solutions. As with each architectural style, the implementation of a concrete microservice-based system can be of arbitrary quality. Several studies also report that software professionals trust in the foundational maintainability of service orientation and microservices in particular. A blind belief in these qualities without appropriate evolvability assurance can lead to violations of important principles and therefore negatively impact software evolution. In addition to this, very little scientific research has covered the areas of maintenance, evolution, or technical debt of microservices.
Objectives: To address this, the aim of this research is to support developers of microservices with appropriate methods, techniques, and tools to evaluate or improve evolvability and to facilitate sustainable long-term development. In particular, we want to provide recommendations and tool support for metric-based as well as scenario-based evaluation. In the context of service-based evolvability, we furthermore want to analyze the effectiveness of patterns and collect relevant antipatterns. Methods: Using empirical methods, we analyzed the industry state of the practice and the academic state of the art, which helped us to identify existing techniques, challenges, and research gaps. Based on these findings, we then designed new evolvability assurance techniques and used additional empirical studies to demonstrate and evaluate their effectiveness. Applied empirical methods were for example surveys, interviews, (systematic) literature studies, or controlled experiments.
Contributions: In addition to our analyses of industry practice and scientific literature, we provide contributions in three different areas. With respect to metric-based evolvability evaluation, we identified a set of structural metrics specifically designed for service orientation and analyzed their value for microservices. Subsequently, we designed tool-supported approaches to automatically gather a subset of these metrics from machine-readable RESTful API descriptions and via a distributed tracing mechanism at runtime. In the area of scenario-based evaluation, we developed a tool-supported lightweight method to analyze the evolvability of a service-based system based on hypothetical evolution scenarios. We evaluated the method with a survey (N=40) as well as hands-on interviews (N=7) and improved it further based on the findings. Lastly with respect to patterns and antipatterns, we collected a large set of service-based patterns and analyzed their applicability for microservices. From this initial catalogue, we synthesized a set of candidate evolvability patterns via the proxy of architectural modifiability tactics. The impact of four of these patterns on evolvability was then empirically tested in a controlled experiment (N=69) and with a metric-based analysis. The results suggest that the additional structural complexity introduced by the patterns as well as developers' pattern knowledge have an influence on their effectiveness. As a last contribution, we created a holistic collection of service-based antipatterns for both SOA and microservices and published it in a collaborative repository.
Conclusion: Our contributions provide first foundations for a holistic view on the evolvability assurance of microservices and address several perspectives. Metric- and scenario-based evaluation as well as service-based antipatterns can be used to identify "hot spots" while service-based patterns can remediate them and provide means for systematic evolvability construction. All in all, researchers and practitioners in the field of microservices can use our artifacts to analyze and improve the evolvability of their systems as well as to gain a conceptual understanding of service-based evolvability assurance.
Scenario-based analysis is a comprehensive technique to evaluate software quality and can provide more detailed insights than e.g. maintainability metrics. Since such methods typically require significant manual effort, we designed a lightweight scenario-based evolvability evaluation method. To increase efficiency and to limit assumptions, the method exclusively targets service- and microservice-based systems. Additionally, we implemented web-based tool support for each step. Method and tool were also evaluated with a survey (N=40) that focused on change effort estimation techniques and hands-on interviews (N=7) that focused on usability. Based on the evaluation results, we improved method and tool support further. To increase reuse and transparency, the web-based application as well as all survey and interview artifacts are publicly available on GitHub. In its current state, the tool-supported method is ready for first industry case studies.
Context
Microservices as a lightweight and decentralized architectural style with fine-grained services promise several beneficial characteristics for sustainable long-term software evolution. Success stories from early adopters like Netflix, Amazon, or Spotify have demonstrated that it is possible to achieve a high degree of flexibility and evolvability with these systems. However, the described advantageous characteristics offer no concrete guidance and little is known about evolvability assurance processes for microservices in industry as well as challenges in this area. Insights into the current state of practice are a very important prerequisite for relevant research in this field.
Objective
We therefore wanted to explore how practitioners structure the evolvability assurance processes for microservices, what tools, metrics, and patterns they use, and what challenges they perceive for the evolvability of their systems.
Method
We first conducted 17 semi-structured interviews and discussed 14 different microservice-based systems and their assurance processes with software professionals from 10 companies. Afterwards, we performed a systematic grey literature review (GLR) and used the created interview coding system to analyze 295 practitioner online resources.
Results
The combined analysis revealed the importance of finding a sensible balance between decentralization and standardization. Guidelines like architectural principles were seen as valuable to ensure a base consistency for evolvability and specialized test automation was a prevalent theme. Source code quality was the primary target for the usage of tools and metrics for our interview participants, while testing tools and productivity metrics were the focus of our GLR resources. In both studies, practitioners did not mention architectural or service-oriented tools and metrics, even though the most crucial challenges like Service Cutting or Microservices Integration were of an architectural nature.
Conclusions
Practitioners relied on guidelines, standardization, or patterns like Event-Driven Messaging to partially address some reported evolvability challenges. However, specialized techniques, tools, and metrics are needed to support industry with the continuous evaluation of service granularity and dependencies. Future microservices research in the areas of maintenance, evolution, and technical debt should take our findings and the reported industry sentiments into account.
Digitization fosters the development of IT environments with many rather small structures, like Internet of Things (IoT), microservices, or mobility systems. They are needed to support flexible and agile digitized products and services. The goal is to create service-oriented enterprise architectures (EA) that are self optimizing and resilient. The present research paper investigates methods for decision-making concerning digitization architectures for Internet of Things and microservices. They are based on evolving enterprise architecture reference models and state of the art elements for architectural engineering for microgranular systems. Decision analytics in this field becomes increasingly complex and decision support, particularly for the development and evolution of sustainable enterprise architectures, is sorely needed. The challenging of the decision processes can be supported with in a more flexible and intuitive way by an architecture management cockpit.
Enterprises are currently transforming their strategy, processes, and their information systems to extend their degree of digitalization. The potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, artificial intelligence, big data with analytics, mobile systems, collaboration networks, and cyber physical systems both drives and enables new business designs. Digitalization deeply disrupts existing businesses, technologies and economies and fosters the architecture of digital environments with many rather small and distributed structures. This has a strong impact for new value producing opportunities and architecting digital services and products guiding their design through exploiting a Service-Dominant Logic. The main result of the book chapter extends methods for integral digital strategies with value-oriented models for digital products and services which are defined in the framework of a multi-perspective digital enterprise architecture reference model.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like microservices and the Internet of Things, as part of a new digital enterprise architecture. To integrate micro granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitization of products, services, and processes.
The fast moving process of digitization1 demands flexibility in order to adapt to rapidly changing business requirements and newly emerging business opportunities. New features have to be developed and deployed to the production environment a lot faster. To be able to cope with this increased velocity and pressure, a lot of software developing companies have switched to a Microservice Architecture (MSA) approach. Applications built this way consist of several fine-grained and heterogeneous services that are independently scalable and deployable. However, the technological and business architectural impacts of microservices based applications directly affect their integration into the digital enterprise architecture. As a consequence, traditional Enterprise Architecture Management (EAM) approaches are not able to handle the extreme distribution, diversity, and volatility of micro-granular systems and services. We are therefore researching mechanisms for dynamically integrating large amounts of microservices into an adaptable digital enterprise architecture.