Refine
Document Type
- Conference Proceeding (13)
- Article (5)
- Part of a Book (2)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- yes (20)
Institute
- Informatik (20)
Publisher
- IEEE (6)
- ACM (4)
- Springer International Publishing (2)
- Association for Computing Machinery (1)
- Association of Computing Machinery (1)
- BioMed Central (1)
- Sage (1)
- Springer (1)
- Springer Nature (1)
- The University of Edinburgh : Informatics (1)
This work is a report on practical experiences with the issue of interoperability in German practice management systems (PMSs) from an ongoing clinical trial on teledermatology, the TeleDerm project. A proprietary and established web-platform for store-and-forward telemedicine is integrated with the IT in the GPs’ offices for automatic exchange of basic patient data. Most of the 19 different PMSs included in the study sample lack support of modern health data exchange standards, therefore the relatively old but widely available German health data exchange interface “Gerätedatentransfer” (GDT) is used. Due to the lack of enforcement and regulation of the GDT standard, several obstacles to interoperability are encountered. As a partial, but reusable working solution to cope with these issues, we present a custom middleware which is used in conjunction with GDT. We describe the design, technical implementation and observed hindrances with the existing infrastructure. A discussion on health care interfacing standards and the current state of interoperability in German PMS software is given.
Background: Internationally, teledermatology has proven to be a viable alternative to conventional physical referrals. Travel cost and referral times are reduced while patient safety is preserved. Especially patients from rural areas benefit from this healthcare innovation. Despite these established facts and positive experiences from EU neighboring countries like the Netherlands or the United Kingdom, Germany has not yet implemented store-and-forward teledermatology in routine care.
Methods: The TeleDerm study will implement and evaluate store-and-forward teledermatology in 50 general practitioner (GP) practices as an alternative to conventional referrals. TeleDerm aims to confirm that the possibility of store-and-forward teledermatology in GP practices is going to lead to a 15% (n = 260) reduction in referrals in the intervention arm. The study uses a cluster-randomized controlled trial design. Randomization is planned for the cluster “county”. The main observational unit is the GP practice. Poisson distribution of referrals is assumed. The evaluation of secondary outcomes like acceptance, enablers and barriers uses a mixed methods design with questionnaires and interviews.
Discussion: Due to the heterogeneity of GP practice organization, patient management software, information technology service providers, GP personal technical affinity and training, we expect several challenges in implementing teledermatology in German GP routine care. Therefore, we plan to recruit 30% more GPs than required by the power calculation. The implementation design and accompanying evaluation is expected to deliver vital insights into the specifics of implementing telemedicine in German routine care.
Current data-intensive systems suffer from scalability as they transfer massive amounts of data to the host DBMS to process it there. Novel near-data processing (NDP) DBMS architectures and smart storage can provably reduce the impact of raw data movement. However, transferring the result-set of an NDP operation may increase the data movement, and thus, the performance overhead. In this paper, we introduce a set of in-situ NDP result-set management techniques, such as spilling, materialization, and reuse. Our evaluation indicates a performance improvement of 1.13 × to 400 ×.
Data analytics tasks on large datasets are computationally intensive and often demand the compute power of cluster environments. Yet, data cleansing, preparation, dataset characterization and statistics or metrics computation steps are frequent. These are mostly performed ad hoc, in an explorative manner and mandate low response times. But, such steps are I/O intensive and typically very slow due to low data locality, inadequate interfaces and abstractions along the stack. These typically result in prohibitively expensive scans of the full dataset and transformations on interface boundaries.
In this paper, we examine R as analytical tool, managing large persistent datasets in Ceph, a wide-spread cluster file-system. We propose nativeNDP – a framework for Near Data Processing that pushes down primitive R tasks and executes them in-situ, directly within the storage device of a cluster-node. Across a range of data sizes, we show that nativeNDP is more than an order of magnitude faster than other pushdown alternatives.
Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.
Many modern DBMS architectures require transferring data from storage to process it afterwards. Given the continuously increasing amounts of data, data transfers quickly become a scalability limiting factor. Near-Data Processing and smart/computational storage emerge as promising trends allowing for decoupled in-situ operation execution, data transfer reduction and better bandwidth utilization. However, not every operation is suitable for an in-situ execution and a careful placement and optimization is needed.
In this paper we present an NDP-aware cost model. It has been implemented in MySQL and evaluated with nKV. We make several observations underscoring the need for optimization.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
Active storage
(2019)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity.
In the present paper we present NoFTL KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL KV reduces write-amplification 19x and improves storage longevity by imately the same factor.
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.