Refine
Document Type
- Conference proceeding (10)
- Journal article (5)
Language
- English (15)
Has full text
- yes (15)
Is part of the Bibliography
- yes (15)
Institute
- ESB Business School (15)
Publisher
- Elsevier (7)
- Springer (3)
- Stellenbosch University (3)
- Leibniz-Universität Hannover (1)
- MDPI (1)
Gamification, the use of game elements for non-gaming purposes, may just make a huge impact on education, a contribution the world in general and South Africa in particular, desperately needs. In today’s fast-paced work environment, there is not only a severe skills shortage, but also a great need for graduates with practical knowledge - students that are not purely “book smart”. Didactic teaching habits have created an education realm in which reciting facts is more often than not what gets students to pass. Learning factories are physical, operational factories that serve as exemplary and realistic hands-on learning environments and provide an important step towards more industry-prepared graduates. Top universities around the world are establishing such environments and are showing superb results. This paper explores the potential benefit of applying gamification in such a setting to enhance the learning environment even further, and provide opportunities for training otherwise difficult to teach topics, such as shop floor management.
Digitisation forms a part of Industrie 4.0 and is both threatening, but also providing an opportunity to transform business as we know it; and can make entire business models redundant. Although companies might realise the need to digitise, many are unsure of how to start this digital transformation. This paper addresses the problems and challenges faced in digitisation, and develops a model for initialising digital transformation in enterprises. The model is based on a continuous improvement cycle, and also includes triggers for innovative and digital thinking within the enterprise. The model was successfully validated in the German service sector.
The 21st century: an era where emojis and hashtags find their way into every sentence, where taking selfies, live tweeting and mining bitcoin are the norm, and where Insta-culture dictates what we say and do. This is the era into which the digital native was born. With so many changes in every aspect of our lives, how is it that one of the most influential aspects, our education, has remained unchanged? Our education system not only fails to appeal to today’s students, but more importantly, it fails to equip them with the skills required in the 21st Century. It is thus of no surprise that industries feel graduates entering the workplace lack skills in critical thinking, problem solving and self-directed learning. AI, machine learning and big data: Tools and mechanisms we so eagerly incorporate to create smart factories yet are hesitant to use elsewhere. Gamification and games have shown great results in education and training; with most research suggesting a stronger focus on personalization and adaptation. When combined with analytics and machine learning, the potential of games is yet to be realized. A real-time adaptive game would not only always present an appropriate degree of challenge for the individual but would allow for a shift in focus from the recitation of facts, to the application of information filtered to solve the particular problem at hand. South Africa, a country faced with a severe skills gap, could benefit greatly from games. If used correctly, they may just offer a desperately needed contribution toward equipping both current and future employees with the skills needed to survive in the 21st century. This paper explores the feasibility of using such games for enhanced knowledge dissemination and the upskilling of the workforce.
The paper describes a new stimulus using learning factories and an academic research programme - an M.Sc. in Digital Industrial Management and Engineering (DIME) comprising a double degree - to enhance international collaboration between four partner universities. The programme will be structured in such a way as to maintain or improve the level of innovation at the learning factories of each partner. The partners agreed to use Learning Factory focus areas along with DIME learning modules to stimulate international collaboration. Furthermore, they identified several research areas within the framework of the DIME program to encourage horizontal and vertical collaboration. Vertical collaboration connects faculty expertise across the Learning Factory network to advance knowledge in one of the focus areas, while Horizontal collaboration connects knowledge and expertise across multiple focus areas. Together they offer a platform for students to develop disciplinary and cross-disciplinary applied research skills necessary for addressing the complex challenges faced by industry. Hence, the university partners have the opportunity to develop the learning factory capabilities in alignment with the smart manufacturing concept. The learning factory is thus an important pillar in this venture. While postgraduate students/researchers in the DIME program are the enablers to ensure the success of entire projects, the learning factory provides a learning environment which is entirely conducive to fostering these successful collaborations. Ultimately, the partners are focussed on utilising smart technologies in line with the digitalization of the production process.
Increasing flexibility, greater transparency and faster adaptability play a key role in the development of future intralogistics. Ever-changing environmental conditions require easy extensibility and modifiability of existing bin systems. This research project explores approaches to transfer the Internet of Things (IoT) paradigm to intralogistics. This allows a synchronization of the material and information flow. The bin is enabled by the implementation of adequate hardware and software components to capture, store, process and forward data to selected system subscribers. Monitoring the processes in the intralogistics by means of the smart bin system ensures the implementation of appropriate actions in case of defined deviations. By using explorative expert interviews with representatives from the automotive and pharmaceutical industries, seven practical application scenarios were defined. On this basis, the requirements of smart bin systems were examined. For each individual case of application, a system model was created in order to obtain an overview of the system components and thus reveal similarities and differences. Based on the similarities of the system models, a general requirement profile was derived. After the hardware components of the bin system had been determined, a utility analysis was carried out to find the adequate IoT software. The utility analysis was conducted with a focus on data acquisition and data transfer, data storage, data analysis, data presentation as well as authorization management and data security. The results show that there is great interest in easily expandable and modifiable bin systems, as in all cases, the necessary information flow in the existing bin system has to be improved by means of new IoT hardware and software components.
The supply of customer-specific products is leading to the increasing technical complexity of machines and plants in the manufacturing process. In order to ensure the availability of the machines and plants, maintenance is considered as an essential key. The application of cyber-physical systems enables the complexity to be mastered by improving the availability of information, implementing predictive maintenance strategies and the provision of all relevant information in real-time. The present research project deals with the development of a cost-effective and retrofittable smart maintenance system for the application of ultraviolet (UV) lamps. UV lamps are used in a variety of applications such as curing of materials and water disinfection, where UV lamps are still used instead of UV LED due to their higher effectiveness. The smart maintenance system enables continuous condition monitoring of the UV lamp through the integration of sensors. The data obtained are compared with data from existing lifetime models of UV lamps to provide information about the remaining useful lifetime of the UV lamp. This ensures needs-based maintenance measures and more efficient use of UV lamps. Furthermore, it is important to have accurate information on the remaining useful lifetime of a UV lamp, as the unplanned breakdown of a UV lamp can have far-reaching consequences. The key element is the functional model of the envisioned cyber-physical system, describing the dependencies between the sensors and actuator, the condition monitoring system as well as the IoT platform. Based on the requirements developed and the functional model, the necessary hardware and software are selected. Finally, the system is developed and retrofitted to a simulated curing process of a 3D printer to validate its functional capability. The developed system leads to improved information availability of the condition of UV lamps, predictive maintenance measures and context-related provision of information.
The use of learning factories for education in maintenance concepts is limited, despite the important role maintenance plays in the effective operation of organizational assets. A training programme in a learning factory environment is presented where a combination of gamification, classroom training and learning factory applications is used to introduce students to the concepts of maintenance plan development, asset failure characteristics and the costs associated with maintenance decision-making. The programme included a practical task to develop a maintenance plan for different advanced manufacturing machines in a learning factory setting. The programme stretched over a four-day period and demonstrated how learning factories can be effectively utilized to teach management related concepts in an interdisciplinary team context, where participants had no, or very limited, previous exposure to these concepts.
Rapidly changing market conditions and global competition are leading to an increasing complexity of logistics systems and require innovative approaches with respect to the organisation and control of these systems. In scientific research, concepts of autonomously controlled logistics systems show a promising approach to meet the increasing requirements for flexible and efficient order processing. In this context, this work aims to introduce a system that is able to adjust order processing dynamically, and optimise intralogistics transportation regarding various generic intralogistics target criteria. The logistics system under consideration consists of various means of transport for autonomous decision-making and fulfilment of transport orders with defined source-sink relationships. The context of this work is set by introducing the Learning Factory Werk 150 with its existing hardware and software infrastructure and its defined target figures to measure the performance of the system. Specifically, the important target figures cost and performance are considered for the transportation system. The core idea of the system’s logic is to solve the problem of order allocation to specific means of transport by linking a Genetic Algorithm with a Multi-Agent System. The implementation of the developed system is described in an application scenario at the learning factory.
Today's logistics systems are characterized by uncertainty and constantly changing requirements. Rising demand for customized products, short product life cycles and a large number of variants increases the complexity of these systems enormously. In particular, intralogistics material flow systems must be able to adapt to changing conditions at short notice, with little effort and at low cost. To fulfil these requirements, the material flow system needs to be flexible in three important parameters, namely layout, throughput and product. While the scope of the flexibility parameters is described in literature, the respective effects on an intralogistics material flow system and the influencing factors are mostly unknown. This paper describes how flexibility parameters of an intralogistics system can be determined using a multi-method simulation. The study was conducted in the learning factory “Werk150” on the campus of Reutlingen University with its different means of transport and processes and validated in terms of practical experiments.
Indoor localization systems are becoming more and more important with the digitalization of the industrial sector. Sensor data such as the current position of machines, transport vehicles, goods or tools represent an essential component of cyber physical production systems (CCPS). However, due to the high costs of these sensors, they are not widespread and are used mainly in special scenarios. However, especially optical indoor positioning systems (OIPS) based on cameras have certain advantages due to their technological specifications. In this paper, the application scenarios and requirements as well as their characteristics are presented and a classification approach of OIPS is introduced.