Refine
Document Type
- Journal article (1)
- Conference proceeding (1)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Technik (2)
Despite the unstoppable global drive towards electric mobility, the electrification of sub-Saharan Africa’s ubiquitous informal multi-passenger minibus taxis raises substantial concerns. This is due to a constrained electricity system, both in terms of generation capacity and distribution networks. Without careful planning and mitigation, the additional load of charging hundreds of thousands of electric minibus taxis during peak demand times could prove catastrophic. This paper assesses the impact of charging 202 of these taxis in Johannesburg, South Africa. The potential of using external stationary battery storage and solar PV generation is assessed to reduce both peak grid demand and total energy drawn from the grid. With the addition of stationary battery storage of an equivalent of 60 kWh/taxi and a solar plant of an equivalent of 9.45 kWpk/taxi, the grid load impact is reduced by 66%, from 12 kW/taxi to 4 kW/taxi, and the daily grid energy by 58% from 87 kWh/taxi to 47 kWh/taxi. The country’s dependence on coal to generate electricity, including the solar PV supply, also reduces greenhouse gas emissions by 58%.
The majority of people in sub-Saharan Africa (SSA) rely on so-called “paratransit” for their mobility needs. The term refers to a large informal transport sector that runs independent of government, of which 83% comprises minibus taxis (MBT). MBT technology is often old and contribute significantly to climate change with their high carbon dioxide (CO2) emissions. Issues related to sustainability and climate change are becoming more important world-wide and hardly any attention is given to MBTs. Converting the MBTs from internal combustion engines (ICEs) to electric motors could be a possible solution. The existing power grid in SSA is largely based on fossil power plants and is unstable. This can be seen by frequent local power blackouts. To avoid further strain on the existing power grid, it would therefore make sense to charge the electric minibus taxis (eMBTs) through a grid consisting of renewable energies. A mobility map is created via simulations with collected data points of the MBTs. By using this mobility map, the energy demand of the eMBTs is calculated. Furthermore, a region-specific photovoltaic (PV) and wind simulation can be realised based on existing weather data, and a tool to size the supply system to charge the eMBTs is developed after all data has been collected. With the help of this work, it can be determined to what extent renewable energies such as PV and wind power can be used to support the transition from ICEs to electric engines in the MBT sector.