Refine
Document Type
- Conference proceeding (2)
- Journal article (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Technik (2)
- Informatik (1)
Publisher
- Association for Computing Machinery (1)
- IEEE (1)
- MDPI (1)
Human pose estimation (HPE) is integral to scene understanding in numerous safety-critical domains involving human-machine interaction, such as autonomous driving or semi-automated work environments. Avoiding costly mistakes is synonymous with anticipating failure in model predictions, which necessitates meta-judgments on the accuracy of the applied models. Here, we propose a straightforward human pose regression framework to examine the behavior of two established methods for simultaneous aleatoric and epistemic uncertainty estimation: maximum a-posteriori (MAP) estimation with Monte-Carlo variational inference and deep evidential regression (DER). First, we evaluate both approaches on the quality of their predicted variances and whether these truly capture the expected model error. The initial assessment indicates that both methods exhibit the overconfidence issue common in deep probabilistic models. This observation motivates our implementation of an additional recalibration step to extract reliable confidence intervals. We then take a closer look at deep evidential regression, which, to our knowledge, is applied comprehensively for the first time to the HPE problem. Experimental results indicate that DER behaves as expected in challenging and adverse conditions commonly occurring in HPE and that the predicted uncertainties match their purported aleatoric and epistemic sources. Notably, DER achieves smooth uncertainty estimates without the need for a costly sampling step, making it an attractive candidate for uncertainty estimation on resource-limited platforms.
Analog integrated circuit sizing is notoriously difficult to automate due to its complexity and scale; thus, it continues to heavily rely on human expert knowledge. This work presents a machine learning-based design automation methodology comprising pre-defined building blocks such as current mirrors or differential pairs and pre-computed look-up tables for electrical characteristics of primitive devices. Modeling the behavior of primitive devices around the operating point with neural networks combines the speed of equation-based methods with the accuracy of simulation-based approaches and, thereby, brings quality of life improvements for analog circuit designers using the gm/Id method. Extending this procedural automation method for human design experts, we present a fully autonomous sizing approach. Related work shows that the convergence properties of conventional optimization approaches improve significantly when acting in the electrical domain instead of the geometrical domain. We, therefore, formulate the circuit sizing task as a sequential decision-making problem in the alternative electrical design space. Our automation approach is based entirely on reinforcement learning, whereby abstract agents learn efficient design space navigation through interaction and without expert guidance. These agents’ learning behavior and performance are evaluated on circuits of varying complexity and different technologies, showing both the feasibility and portability of the work presented here.
There is still a great reliance on human expert knowledge during the analog integrated circuit sizing design phase due to its complexity and scale, with the result that there is a very low level of automation associated with it. Current research shows that reinforcement learning is a promising approach for addressing this issue. Similarly, it has been shown that the convergence of conventional optimization approaches can be improved by transforming the design space from the geometrical domain into the electrical domain. Here, this design space transformation is employed as an alternative action space for deep reinforcement learning agents. The presented approach is based entirely on reinforcement learning, whereby agents are trained in the craft of analog circuit sizing without explicit expert guidance. After training and evaluating agents on circuits of varying complexity, their behavior when confronted with a different technology, is examined, showing the applicability, feasibility as well as transferability of this approach.