Refine
Document Type
- Report (3)
- Journal article (2)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Texoversum (5)
Publisher
- Deutsches Textilforschungszentrum Nord-West (3)
- Elsevier (1)
- Sage (1)
Sol-Gel basierte Flammschutzmittel stellen einen vielversprechenden Ansatz für Textilien dar, gerade im Bereich des Ersatzes von derzeit etablierten halogenhaltigen Flammschutzmitteln. Letztere sind aufgrund ihrer toxikologisch Bedenklichkeit sowie ihrer mitunter bioakkumulierenden Eigenschaften in die Kritik geraten. In diesem Forschungsvorhaben wurde daher untersucht wie aus Phosphor- und stickstoffhaltige Silane halogenfreie Flammschutzmittel verwirklicht werden können. Die Sol-Gel-Schicht fungierte dabei zum einen als nicht brennbarer Binder, zum anderen konnten über das Anbinden von Phosphorgruppen in an kommerziell verfügbare Silane Flammschutz aktive Gruppen direkt mit eingebunden werden. Verschiedene Syntheseansätze wurden dabei verfolgt, wobei durch alle hergestellten N-P-Silane ein Flammschutz nach DIN EN ISO 15025 (Schutzkleidung – Schutz gegen Hitze und Flammen) erhalten wurden. Dabei hängt die Flammschutzwirkung stark von den funktionellen Gruppen und der Oxidationsstufe des Phosphors ab, dabei konnte ein entsprechender Flammschutz bei Auflagen von 5 % erzielt werden. Es konnte gezeigt werden, dass ein Mechanismus auf Basis der Bildung einer Schutzschicht hauptsächlich verantwortlich für den Flammschutz ist. Dieses Ergebnis ist für eine zukünftige, weitere Optimierung entsprechender Ausrüstungen nicht zu unterschätzen. Durch Ausrüstungsversuche im semi-industriellen Maßstab konnte weiterhin gezeigt werden, dass einer großtechnischen Umsetzung der angewandten Ausrüstungen prinzipiell nichts im Wege steht. Je nach funktioneller Gruppe am Phosphor konnte die Wasserlöslichkeit und die Waschstabilität kontrolliert werden. Dabei konnte zum einen gezeigt werden, dass hydrophobes N-P-Silane eine bessere Waschbeständigkeit aufweisen, hydrophile N-P-Silane erhalten diese erst bei Fixierungstemperaturen von 180 °C. Ausgehend von den Ergebnissen konnten sticktstoffgenerierende und cyanursäure-basierte N-P-Silane entwickelt werden, welche sich besonders in einer guten Flammschutzwirkung bei Mischgeweben auszeichnen. Insgesamt konnte innerhalb des Forschungsvorhabens gezeigt werden, dass N-P-Silane hervorragende permanente Flammschutzmittel für Textilien sind und auf welchem Mechanismus dieser Flammschutz begründet ist.
Ziel des Forschungsvorhabens war es, unter Verwendung von photokatalytisch aktiven Zinkoxid- und/oder Titandioxid-Partikeln Kombinationsausrüstungen für die Textilindustrie zu entwickeln, welche einen hohen UV-Schutz (UPF-Wert: 50+), eine hohe antimikrobielle Wirksamkeit und selbsteinigende Eigenschaften garantieren, um so neue hygienischere Textilien zu schaffen. Hierzu sollten wässrige Ausrüstungen entwickelt werden, die über konventionelle Veredlungstechniken – „pad-dry-cure“ – appliziert werden können. Die Aktivität der Partikel sollte unter Einstrahlung von Raumlicht gegeben sein. Daher sollten die Partikel so modifiziert werden, dass ihre Absorption im Wellenlängenbereich des sichtbaren Lichtes liegt.
Für die Erfüllung der Projektziele wurden verschiedene dotierte TiO2- und ZnO-Nanopartikel synthetisiert, die durch das Einbringen von Dotanden eine Verschiebung der Absorption elektromagnetischer Strahlung erfahren haben. Ein Aktivitätsscreening geeigneter Kandidaten zeigte, dass einige einen Abbau organischer Referenzmaterialien katalysierten und eine antibakterielle Aktivität vorwiesen. Eisendotiertes Zinkoxid (Fe-ZnO) vereinte die beiden gewünschten Eigenschaften in ausreichendem Maße und verfügte zudem über eine hohe Absorption von UV-Strahlung, sodass damit auch das dritte Projektziel - ein ausreichender UV-Schutz - erreicht werden konnte.
Die wiederholte Synthese von Fe-ZnO gelang im Labormaßstab. Die Partikel konnten durch das Sol-Gel-Verfahren mittels anorganischem Tetraethoxysilan, sowie über einen organischen Polyurethanbasierten Binder durch Foulardierverfahren an verschiedenen Textilien immobilisiert werden. Die Waschstabilität war gegeben und eine Photodegradation des Binders und der Textilien konnte zumindest für das TEOS-System ausgeschlossen werden. Das Aktivitätsscreening der ausgerüsteten Textilien zeigte, dass immobilisierte Nanopartikel zwar zum Erreichen der anvisierten
Projektziele genügen, jedoch konnte die Aktivität des als Referenz verwendeten TiO2 nicht übertroffen werden.
Insgesamt ergab sich ein Einblick in den Nutzen von Nanopartikeln als katalytisch aktive Substanz, die zur Ausrüstung von Textilien geeignet ist. Um eine genügende Aktivität im sichtbaren Wellenlängenbereich zu erzielen und damit einen Nutzen für eine Innenraumanwendung zu generieren, müssen jedoch deutlich besser die Grundlagen der Dotierung und ihre Auswirkung auf die ROS-Generierung verstanden werden.
Die Ziele des Forschungsvorhabens wurden zum Teil erreicht.
Ziel des Projekts ist es, die Schutzwirkung von Schweißerschutzkleidung zu verbessern. Der Fokus lag dabei auf den Fragestellungen: Kann man durch eine Ausrüstung die Beständigkeit der Textilien gegen Tropfen von flüssigem Metall erhöhen und gleichzeitig einen besseren UV-Schutz erhalten? Diese Schutzfaktoren von Schweißerschutzkleidung hängen stark vom Flächengewicht des verwendeten Textils ab. Je höher das Flächengewicht, desto beständiger ist die Kleidung gegenüber Metallspritzern und desto weniger UV wird durch die Kleidung hindurchgelassen. Jedoch gilt, je höher das Flächengewicht, desto schlechter ist der Tragekomfort, da ein hohes Flächengewicht u.a. das Schwitzen fördert. Schweißerschutzkleidung wird nach zwei Klassen unterteilt. Im Fall von Kleidung der Klasse 1 darf ein Temperaturanstieg von 40 K auf der Rückseite des Textils erst nach dem 15. aufgetroffenen Tropfen flüssigen Eisens auftreten. Im Fall der Klasse 2 darf der Temperaturanstieg erst nach 25 Tropfen auftreten. Als Ausgang für dieses Projekt wurden Gewebe ausgewählt, welche die Klasse 1 erfüllen. Es wurde versucht, diese Gewebe durch die Ausrüstung entweder mit wärmeleitfähigen Kompositen oder durch eine Nanostrukturierung ("Lotuseffekt") entsprechend auszurüsten, so dass die Anforderungen für Klasse 2 erfüllt werden. Wärmeleitfähige Komposite sollten für die Ausrüstung ein schnelles Ableiten und Verteilen der Wärme der Metalltropfen auf der Oberfläche garantieren, wodurch sichergestellt werden sollte, dass die Erwärmung der Rückseite des Gewebes deutlich verlangsamt wird. Mit dieser Ausrüstung konnte die Klasse 2 nicht erreicht werden, sie führte jedoch zu keiner Verschlechterung des Tragekomforts des leichteren Gewebes, und die Transmission von schädlicher UV-Strahlung wurde verringert. Durch eine Nanostrukturierung sollte ein "Lotuseffekt" für kleine Metalltropfen erzielt werden. Durch die Nanostrukturierung trifft der Metalltropfen zuerst auf die Oberfläche der Nanopartikel auf, wobei isolierende Luft zwischen Metalltropfen und Gewebeoberfläche eingeschlossen wird und so das Gewebe vor dem Tropfen selbst schützt. Dieser Ansatz lässt vermuten, dass sich der Effekt gut über die aufgetragenen Menge Nanopartikel / Binder einstellen lässt. Im Fall von Binderkonzentrationen zwischen 1,25 und 2,5 % wird die Flexibilität nur geringfügig beeinträchtigt, wobei mit unterschiedlichen Partikeln (SiO2, ZnO, AlOx und TiO2) die Schweißerschutzklasse 2 erreicht werden kann. Der Tragekomfort der Gewebe wird nicht beeinflusst. Das Verfahren bietet KMU aus dem Bereich der Textilveredlung neue innovative Produkte für den Arbeitsschutzsektor. Die Verwendung von leichterer Kleidung im Bereich der PSA (Persönliche Schutzausrüstung) erhöht die Akzeptanz dieser, da der Tragekomfort im Vergleich zu Schweißerschutzkleidung der Klasse 2 durch das im Projekt entwickelte Verfahren der Nanostrukturierung von Kleidung der Schweißerschutzklasse 1 einen deutlich verbesserten Tragekomfort mit sich bringt. Dadurch können von KMU, welche sich auf den Sektor PSA spezialisiert haben, neue und auch internationale Absatzmärkte eröffnet werden.
Several ionic liquids are excellent solvents for cellulose. Starting from that finishing of PET fabrics with cellulose dissolved in ionic liquids like 1-ethyl 3-methyl imidazolium acetate, diethylphosphate and chloride, or the chloride of butyl-methyl imidazolium has been investigated. Finishing has been carried out from solutions of different concentrations, using microcrystalline cellulose or cotton and by employing different cross-linkers. Viscosity of solutions has been investigated for different ionic liquids,concentrations, cellulose sources, linkers and temperatures. Since ionic liquids exhibit no vapor pressure,simple pad-dry-cure processes are excluded. Before drying the ionic liquid has to be removed by a rinsing step. Accordingly rinsing with fresh ionic liquid followed by water or the direct rinsing with waterhave been tested. The amount of cellulose deposited has been investigated by gravimetry, zinc chlorideiodine test as well as reactive dyeing. Results concerning wettability, water up-take, surface resistance,wear-resistance or washing stability are presented.
Three established test methods employed for evaluating the abrasion or wear resistance of textile materials were compared to gain deeper insight into the specific damaging mechanisms to better understand a possible comparability of the results of the different tests. The knowledge of these mechanisms is necessary for a systematic development of finishing agents improving the wear resistance of textiles. Martindale, Schopper, and Einlehner tests were used to analyze two different fabrics made of natural (cotton) or synthetic (polyethylene terephthalate) fibers, respectively. Samples were investigated by digital microscopy and scanning electron microscopy to visualize the damage. Damage symptoms are compared and discussed with respect to differences in the damaging mechanisms.