Refine
Document Type
- Conference proceeding (10)
- Journal article (7)
- Book chapter (1)
Language
- English (18)
Has full text
- yes (18)
Is part of the Bibliography
- yes (18)
Institute
- ESB Business School (18)
Publisher
Increasing flexibility, greater transparency and faster adaptability play a key role in the development of future intralogistics. Ever-changing environmental conditions require easy extensibility and modifiability of existing bin systems. This research project explores approaches to transfer the Internet of Things (IoT) paradigm to intralogistics. This allows a synchronization of the material and information flow. The bin is enabled by the implementation of adequate hardware and software components to capture, store, process and forward data to selected system subscribers. Monitoring the processes in the intralogistics by means of the smart bin system ensures the implementation of appropriate actions in case of defined deviations. By using explorative expert interviews with representatives from the automotive and pharmaceutical industries, seven practical application scenarios were defined. On this basis, the requirements of smart bin systems were examined. For each individual case of application, a system model was created in order to obtain an overview of the system components and thus reveal similarities and differences. Based on the similarities of the system models, a general requirement profile was derived. After the hardware components of the bin system had been determined, a utility analysis was carried out to find the adequate IoT software. The utility analysis was conducted with a focus on data acquisition and data transfer, data storage, data analysis, data presentation as well as authorization management and data security. The results show that there is great interest in easily expandable and modifiable bin systems, as in all cases, the necessary information flow in the existing bin system has to be improved by means of new IoT hardware and software components.
Rising consumption due to a growing world population and increasing prosperity, combined with a linear economic system have led to a sharp increase in garbage collection, general pollution of the environment and the threat of resource scarcity. At the same time, the perception of environmental protection becomes more sensitive as the consequences of neglecting sustainable business and eco-efficiency become more visible. The Circular Economy (CE) could reduce waste production and is able to decouple economic growth from resource consumption, but most of the products currently in use are not designed for the reuse-forms of the CE. In addition, the decision-making process of the End of-Usage (EoU) products regarding the following steps has further weaknesses in terms of economic attractiveness for the participants, which leads to low return rates and thus the disposal is often the only alternative.
This paper proposes a model of the decision-making process, which uses machine learning. For this purpose, a Machine Learning (ML) classification is created, by applying the waterfall model. An artificial neural network (ANN) uses information about the model, use phase and the obvious symptoms of the product to predict the condition of individual components. The resulting information can be used in a downstream economic and ecological evaluation to assess the possible next steps. To test this process comprehensive training data is simulated to train the ANN. The decentralized implementation, cost savings and the possibility of an incentive system for the return of an end-of-usage product could lead to increased return rates. Since electronic devices in particular are attractive for the CE, laptops are the reference object of this work. However, the obtained findings are easily applicable to other electronic devices.
The use of learning factories for education in maintenance concepts is limited, despite the important role maintenance plays in the effective operation of organizational assets. A training programme in a learning factory environment is presented where a combination of gamification, classroom training and learning factory applications is used to introduce students to the concepts of maintenance plan development, asset failure characteristics and the costs associated with maintenance decision-making. The programme included a practical task to develop a maintenance plan for different advanced manufacturing machines in a learning factory setting. The programme stretched over a four-day period and demonstrated how learning factories can be effectively utilized to teach management related concepts in an interdisciplinary team context, where participants had no, or very limited, previous exposure to these concepts.
Companies are becoming aware of the potential risks arising from sustainability aspects in supply chains. These risks can affect ecological, economic or social aspects. One important element in managing those risks is improved transparency in supply chains by means of digital transformation. Innovative technologies like blockchain technology can be used to enforce transparency. In this paper, we present a smart contract-based Supply Chain Control Solution to reduce risks. Technological capabilities of the solution will be compared to a similar technology approach and evaluated regarding their benefits and challenges within the framework of supply chain models. As a result, the proposed solution is suitable for the dynamic administration of complex supply chains.
Globalisation, shorter product life cycles, and increasing product varieties have led to complex supply chains. At the same time, there is a growing interest of customers and governments in having a greater transparency of brands, manufacturers, and producers throughout the supply chain. Due to the complex structure of collaborative manufacturing networks, the increase of supply chain transparency is a challenge for manufacturing companies. The blockchain technology offers an innovative solution to increase the transparency, security, authenticity, and auditability of products. However, there are still uncertainties when applying the blockchain technology to manufacturing scenarios and thus enable all stakeholders to trace back each component of an assembled product. This paper proposes a framework design to increase the transparency and auditability of products in collaborative manufacturing networks by adopting the blockchain technology. In this context, each component of a product is marked with a unique identification number generated by blockchain-based smart contracts. In this way, a transparent auditability of assembled products and their components can be achieved for all stakeholders, including the custome.
Supply chains have become increasingly complex, making it difficult to ensure transparency throughout the whole supply chain. In this context, first approaches came up, adopting the immutable, decentralised, and secure characteristics of the blockchain technology to increase the transparency, security, authenticity, and auditability of assets in supply chains. This paper investigates recent publications combining the blockchain technology and supply chain management and classifies them regarding the complexity to be mapped on the blockchain. As a result, the increase of supply chain transparency is identified as the main objective of recent blockchain projects in supply chain management. Thereby, most of the recent publications deal with simple supply chains and products. The few approaches dealing with complex parts only map sub-areas of supply chains. Currently no example exists which has the aim of increasing the transparency of complex manufacturing supply chains, and which enables the mapping of complex assembly processes, an efficient auditability of all assets, and an implementation of dynamic adjustments.
Indoor localization systems are becoming more and more important with the digitalization of the industrial sector. Sensor data such as the current position of machines, transport vehicles, goods or tools represent an essential component of cyber physical production systems (CCPS). However, due to the high costs of these sensors, they are not widespread and are used mainly in special scenarios. However, especially optical indoor positioning systems (OIPS) based on cameras have certain advantages due to their technological specifications. In this paper, the application scenarios and requirements as well as their characteristics are presented and a classification approach of OIPS is introduced.
Classification model of supply chain events regarding their transferability to blockchain technology
(2021)
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain supply chain events to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges. In particular, the scalability, storage capacity, and the special requirements for storage formats make it currently impossible to map all supply chain events unrestrictedly on the blockchain. As a first step, this paper identifies important supply chain events for different use cases combining blockchain technology and supply chain management. Secondly, the supply chain events are classified in terms of their expected technical properties and their relevance for the respective use case. Finally, the identified supply chain events are evaluated regarding their transferability to blockchain technology and a classification model is introduced.
The seamless fusion of the virtual world of information with the real physical world of things is considered the key for mastering the increasing complexity of production networks in the context of Industry 4.0. This fusion, widely referred to as the Internet of Things (IoT), is primarily enabled through the use of automatic identification (Auto-ID) technologies as an interface between the two worlds. Existing Auto-ID technologies almost exclusively rely on artificial features or identifiers that are attached to an object for the sole purpose of identification. In fact, using artificial features for the purpose of identification causes additional efforts and is not even always applicable. This paper, therefore, follows an approach of using multiple natural object features defined by the technical product information from computer-aided design (CAD) models for direct identification. By extending optical instance-level 3D-Object recognition by means of additional non-optical sensors, a multi-sensor automatic identification system (AIS) is realised, capable of identifying unpackaged piece goods without the need for artificial identifiers. While the implementation of a prototype confirms the feasibility of the approach, first experiments show improved accuracy and distinctiveness in identification compared to optical instance-level 3D-Object recognition. This paper aims to introduce the concept of multisensor identification and to present the prototype multi-sensor AIS.
Distributed ledger technologies such as the blockchain technology offer an innovative solution to increase visibility and security to reduce supply chain risks. This paper proposes a solution to increase the transparency and auditability of manufactured products in collaborative networks by adopting smart contract-based virtual identities. Compared with existing approaches, this extended smart contract-based solution offers manufacturing networks the possibility of involving privacy, content updating, and portability approaches to smart contracts. As a result, the solution is suitable for the dynamic administration of complex supply chains.