Refine
Document Type
- Conference proceeding (14)
- Journal article (7)
- Book chapter (1)
Language
- English (22)
Has full text
- yes (22)
Is part of the Bibliography
- yes (22)
Institute
- ESB Business School (22)
Publisher
- Elsevier (8)
- Springer (5)
- Leibniz-Universität Hannover (3)
- MDPI (2)
- Inderscience Enterprises (1)
- Stellenbosch University (1)
- Taylor & Francis (1)
- Universität Hannover (1)
Supply chains have become increasingly complex, making it difficult to ensure transparency throughout the whole supply chain. In this context, first approaches came up, adopting the immutable, decentralised, and secure characteristics of the blockchain technology to increase the transparency, security, authenticity, and auditability of assets in supply chains. This paper investigates recent publications combining the blockchain technology and supply chain management and classifies them regarding the complexity to be mapped on the blockchain. As a result, the increase of supply chain transparency is identified as the main objective of recent blockchain projects in supply chain management. Thereby, most of the recent publications deal with simple supply chains and products. The few approaches dealing with complex parts only map sub-areas of supply chains. Currently no example exists which has the aim of increasing the transparency of complex manufacturing supply chains, and which enables the mapping of complex assembly processes, an efficient auditability of all assets, and an implementation of dynamic adjustments.
The seamless fusion of the virtual world of information with the real physical world of things is considered the key for mastering the increasing complexity of production networks in the context of Industry 4.0. This fusion, widely referred to as the Internet of Things (IoT), is primarily enabled through the use of automatic identification (Auto-ID) technologies as an interface between the two worlds. Existing Auto-ID technologies almost exclusively rely on artificial features or identifiers that are attached to an object for the sole purpose of identification. In fact, using artificial features for the purpose of identification causes additional efforts and is not even always applicable. This paper, therefore, follows an approach of using multiple natural object features defined by the technical product information from computer-aided design (CAD) models for direct identification. By extending optical instance-level 3D-Object recognition by means of additional non-optical sensors, a multi-sensor automatic identification system (AIS) is realised, capable of identifying unpackaged piece goods without the need for artificial identifiers. While the implementation of a prototype confirms the feasibility of the approach, first experiments show improved accuracy and distinctiveness in identification compared to optical instance-level 3D-Object recognition. This paper aims to introduce the concept of multisensor identification and to present the prototype multi-sensor AIS.
Classification model of supply chain events regarding their transferability to blockchain technology
(2021)
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain supply chain events to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges. In particular, the scalability, storage capacity, and the special requirements for storage formats make it currently impossible to map all supply chain events unrestrictedly on the blockchain. As a first step, this paper identifies important supply chain events for different use cases combining blockchain technology and supply chain management. Secondly, the supply chain events are classified in terms of their expected technical properties and their relevance for the respective use case. Finally, the identified supply chain events are evaluated regarding their transferability to blockchain technology and a classification model is introduced.
Increasing flexibility, greater transparency and faster adaptability play a key role in the development of future intralogistics. Ever-changing environmental conditions require easy extensibility and modifiability of existing bin systems. This research project explores approaches to transfer the Internet of Things (IoT) paradigm to intralogistics. This allows a synchronization of the material and information flow. The bin is enabled by the implementation of adequate hardware and software components to capture, store, process and forward data to selected system subscribers. Monitoring the processes in the intralogistics by means of the smart bin system ensures the implementation of appropriate actions in case of defined deviations. By using explorative expert interviews with representatives from the automotive and pharmaceutical industries, seven practical application scenarios were defined. On this basis, the requirements of smart bin systems were examined. For each individual case of application, a system model was created in order to obtain an overview of the system components and thus reveal similarities and differences. Based on the similarities of the system models, a general requirement profile was derived. After the hardware components of the bin system had been determined, a utility analysis was carried out to find the adequate IoT software. The utility analysis was conducted with a focus on data acquisition and data transfer, data storage, data analysis, data presentation as well as authorization management and data security. The results show that there is great interest in easily expandable and modifiable bin systems, as in all cases, the necessary information flow in the existing bin system has to be improved by means of new IoT hardware and software components.
Rising consumption due to a growing world population and increasing prosperity, combined with a linear economic system have led to a sharp increase in garbage collection, general pollution of the environment and the threat of resource scarcity. At the same time, the perception of environmental protection becomes more sensitive as the consequences of neglecting sustainable business and eco-efficiency become more visible. The Circular Economy (CE) could reduce waste production and is able to decouple economic growth from resource consumption, but most of the products currently in use are not designed for the reuse-forms of the CE. In addition, the decision-making process of the End of-Usage (EoU) products regarding the following steps has further weaknesses in terms of economic attractiveness for the participants, which leads to low return rates and thus the disposal is often the only alternative.
This paper proposes a model of the decision-making process, which uses machine learning. For this purpose, a Machine Learning (ML) classification is created, by applying the waterfall model. An artificial neural network (ANN) uses information about the model, use phase and the obvious symptoms of the product to predict the condition of individual components. The resulting information can be used in a downstream economic and ecological evaluation to assess the possible next steps. To test this process comprehensive training data is simulated to train the ANN. The decentralized implementation, cost savings and the possibility of an incentive system for the return of an end-of-usage product could lead to increased return rates. Since electronic devices in particular are attractive for the CE, laptops are the reference object of this work. However, the obtained findings are easily applicable to other electronic devices.
The use of learning factories for education in maintenance concepts is limited, despite the important role maintenance plays in the effective operation of organizational assets. A training programme in a learning factory environment is presented where a combination of gamification, classroom training and learning factory applications is used to introduce students to the concepts of maintenance plan development, asset failure characteristics and the costs associated with maintenance decision-making. The programme included a practical task to develop a maintenance plan for different advanced manufacturing machines in a learning factory setting. The programme stretched over a four-day period and demonstrated how learning factories can be effectively utilized to teach management related concepts in an interdisciplinary team context, where participants had no, or very limited, previous exposure to these concepts.
Artificial intelligence is considered to be a significant technology for driving the future evolution of smart manufacturing environments. At the same time, automated guided vehicles (AGVs) play an essential role in manufacturing systems due to their potential to improve internal logistics by increasing production flexibility. Thereby, the productivity of the entire system relies on the quality of the schedule, which can achieve production cost savings by minimizing delays and the total makespan. However, traditional scheduling algorithms often have difficulties in adapting to changing environment conditions, and the performance of a selected algorithm depends on the individual scheduling problem. Therefore, this paper aimed to analyze the scheduling problem classes of AGVs by applying design science research to develop an algorithm selection approach. The designed artifact addressed a catalogue of characteristics that used several machine learning algorithms to find the optimal solution strategy for the intended scheduling problem. The contribution of this paper is the creation of an algorithm selection method that automatically selects a scheduling algorithm, depending on the problem class and the algorithm space. In this way, production efficiency can be increased by dynamically adapting the AGV schedules. A computational study with benchmark literature instances unveiled the successful implementation of constraint programming solvers for solving JSSP and FJSSP scheduling problems and machine learning algorithms for predicting the most promising solver. The performance of the solvers strongly depended on the given problem class and the problem instance. Consequently, the overall production performance increased by selecting the algorithms per instance. A field experiment in the learning factory at Reutlingen University enabled the validation of the approach within a running production scenario.
Supply chains have evolved into dynamic, interconnected supply networks, which increases the complexity of achieving end-to-end traceability of object flows and their experienced events. With its capability of ensuring a secure, transparent, and immutable environment without relying on a trusted third party, the emerging blockchain technology shows strong potential to enable end-to-end traceability in such complex multitiered supply networks. This paper aims to overcome the limitations of existing blockchain-based traceability architectures regarding their object-related event mapping ability, which involves mapping the creation and deletion of objects, their aggregation and disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper proposes a novel ‘blueprint-based’ token concept, which allows clients to group tokens into different types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting conditions, which, for example, are necessary when mapping assembly processes. In addition, the token concept contains logic for reflecting all conducted object-related events in an integrated token history. Finally, for validation purposes, this article implements the architecture’s components in code and proves its applicability based on the Ethereum blockchain. As a result, the proposed blockchain-based traceability architecture covers all object-related supply chain events and proves its general-purpose end-to-end traceability capabilities of object flows.
Recently, blockchain-based tokens have earned an important role in fields such as the art market or online gaming. First approaches exist, which adopt the potentials of blockchain tokens in supply chain management to increase transparency, visibility, automation, and disintermediation of supply chains. In context, the tokenization of assets in supply chains refers to the practice of creating virtual representations of physical assets on the blockchain. Solutions in supply chain management based on the tokenization of assets vary in terms of application objectives, token types, asset characteristics, as well as the complexities of supply chain events to be mapped on the blockchain. Currently, however, no review exists that summarizes the characteristics of blockchain-based tokens and their scope of applications. This paper provides a clear terminological distinction of existing blockchain token types and therefore distinguishes between fungible tokens, non-fungible tokens, smart non-fungible tokens, and dynamic smart non-fungible tokens. Subsequently, the token types are classified regarding their traceability, modifiability, and authorization to evaluate suitability for mapping assets in supply chains. Given the potential of blockchain in supply chain management, the results of the review serve as a foundation for a practical guide supporting the selection process of suitable token types for industrial applications.
The purpose of this paper sought to develop a collaborative framework that provides wine bottling facilities, wine cellars and their direct supply chain partner guidelines to facilitate a collaborative partnership – aiming to aid responsive decision making and improve reliability. The framework was developed using a triangulation approach, consisting of an in-depth literature review, 14 semi-structured interviews with industry experts and a theoretical case study. The developed framework was presented to wine bottling facilities and their supply chain stakeholders. Indication are that the proposed wine industry collaborative framework should enhance supply chain collaboration and will contribute towards the guidance and facilitation in developing collaboration platforms to align supply chain operations, while improving bottling responsiveness and meeting demand requirements.