Refine
Document Type
- Conference proceeding (4)
- Journal article (1)
Language
- English (5)
Is part of the Bibliography
- yes (5)
Institute
- Informatik (5)
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen’s κ and accuracy. The detection performance could be improved for three classes of sleep stages (Wake, REM, Non-REM sleep), four classes (Wake, Non-REM-Light sleep, Non-REM Deep sleep, REM sleep), and five classes (Wake, N1, N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51, and 0.28 to 0.44 respectively by stacking features before and after the epoch to be classified. Further analysis was done for the optimal length and combination method for this stacking approach. Overall, three methods and a variable duration between 30 s and 30 min have been analyzed. Overnight recordings of 36 healthy subjects from the Interdisciplinary Center for Sleep Medicine at Charité-Universitätsmedizin Berlin and Leave-One-Out-Cross-Validation on a patient-level have been used to validate the method.
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
There have been substantial research efforts for algorithms to improve continuous and automated assessment of various health-related questions in recent years. This paper addresses the deployment gap between those improving algorithms and their usability in care and mobile health applications. In practice, most algorithms require significant and founded technical knowledge to be deployed at home or support healthcare professionals. Therefore, the digital participation of persons in need of health care professionals lacks a usable interface to use the current technological advances. In this paper, we propose applying algorithms taken from research as web-based microservices following the common approach of a RESTful service to bridge the gap and make algorithms accessible to caregivers and patients without technical knowledge and extended hardware capabilities. We address implementation details, interpretation and realization of guidelines, and privacy concerns using our self-implemented example. Also, we address further usability guidelines and our approach to those.
In recent decades, it can be observed that a steady increase in the volume of tourism is a stable trend. To offer travel opportunities to all groups, it is also necessary to prepare offers for people in need of long-term care or people with disabilities. One of the ways to improve accessibility could be digital technologies, which could help in planning as well as in carrying out trips. In the work presented, a study of barriers was first conducted, which led to selecting technologies for a test setup after analysis. The main focus was on a mobile app with travel information and 360° tours. The evaluation results showed that both technologies could increase accessibility, but some essential aspects (such as usability, completeness, relevance, etc.) need to be considered when implementing them.