Refine
Document Type
Is part of the Bibliography
- yes (6)
Institute
- Technik (6)
Publisher
- IEEE (3)
- Technische Universität Darmstadt (1)
For area reasons, NMOS transistors are preferred over PMOS for the pull-up path in gate drivers. Bootstrapping has to ensure sufficient NMOS gate overdrive. Especially in high-current gate drivers with large transistors, the bootstrap capacitor is too large for integration. This paper proposes three options of fully integrated bootstrap circuits. The key idea is that the main bootstrap capacitor is supported by a second bootstrap capacitor, which is charged to a higher voltage and ensures high charge allocation when the driver turns on. A capacitor sizing guideline and the overall driver implementation including a suitable charge pump for permanent driver activation is provided. A linear regulator is used for bootstrap supply and it also compensates the voltage drop of the bootstrap diode. Measurements from a testchip in 180 nm high-voltage BiCMOS confirm the benefit of high-voltage charge storing. The fully integrated bootstrap circuit with two stacked 75.8 pF and 18.9 pF capacitors results in an expected voltage dip of lower than 1 V. Both bootstrap capacitors require 70% less area compared to a conventional bootstrap circuit. Besides drivers, the proposed bootstrap can also be directly applied to power stages to achieve fully integrated switched mode power supplies or class-D output stages.
Galvanic isolated gate drivers require a control signal as well as energy transmission from the control side (lowside) to the driver side (high-side). An additional backward signal transmission is preferred for error signals, status information, etc. This is often realized by means of several transformers or opto-couplers. Decreasing the number of isolation elements results in lower cost and a higher degree of miniaturization. This work presents a gate driver with bidirectional signal transmission and energy transfer via one single transformer. The key concept proposed in this paper is to combine bootstrapping to deliver the main gate charge for the driven power switch with additional energy transfer via the signal transformer. This paper also presents a very efficient combination of energy transfer to two high-side supply rails with back channel amplitude modulation. This way an isolated gate driver can be implemented that allows 100% pulse-width modulation (PWM) duty cycle at low complexity and system cost. The proposed high-side driver IC with integrated power supply, modulation and demodulation circuits was manufactured in a 180nm high-voltage BiCMOS technology. Measurements confirm the concept of bidirectional signal transmission with a 1MBit/s amplitude modulation, 10/20MHz frequency modulation and a maximum power transmission of 14mW via the transformer.
Die vorliegende Erfindung betrifft eine Schaltungsanordnung mit einer Bootstrap-Schaltung, die zumindest eine Hauptkapazität aufweist, von der die erste Seite mit einem ersten Zweig der Schaltungsanordnung und die zweite Seite mit einem auf veränderlichem Potential liegenden zweiten Zweig der Schaltungsanordnung verbunden ist. Die vorgeschlagene Schaltungsanordnung zeichnet sich dadurch aus, dass die Bootstrap-Schaltung parallel zur Hauptkapazität wenigstens eine weitere Kapazität aufweist, die über eine zweite Versorgungsspannung auf eine höhere Spannung aufladbar ist als die Hauptkapazität und über wenigstens ein Schaltelement zur Unterstützung der Hauptkapazität zuschaltbar ist. Bei der vorgeschlagenen Schaltungsanordnung kann in Abhängigkeit von der Dimensionierung der Bootstrap-Kapazitäten eine sehr viel kleinere Fläche mit höherem oder gleich bleibenden Spannungseinbruch oder eine nicht so starke Flächenreduzierung mit kleinerem Spannungseinbruch verglichen mit einer herkömmlichen Bootstrap-Schaltung erzielt werden.
Es wird ein hochintegrierter Gatetreiber für 600V-Anwendungen mit einer galvanischen Isolation zwischen der Ansteuerelektronik und der Treiberseite vorgestellt. Eine Besonderheit ist die bidirektionale Signalübertragung und die Energieversorgung über einen einzigen Transformator. Die Treiberansteuersignale werden mittels 10/20 MHz Frequenzmodulation übertragen. Die Signalrückübertragung ist in Form einer 1Mbit/s Amplitudenmodulation realisiert. Die Energieübertragung über den Transformator erlaubt ein dauerhaftes Einschalten des Treibers. Der Energiebedarf während des Schaltvorgangs wird hauptsächlich durch eine Bootstrapschaltung bereitgestellt. Eine weitere Besonderheit ist die Verwendung einer flächeneffizienten Integration einer NMOS Treiberausgangsstufe. Der Gatetreiber wurde in einer 180nm Hochvolt-BiCMOS-Technologie hergestellt. Messungen bestätigen die Funktion des Treibers.
Bootstrap circuits are mainly used for supplying a gate driver circuit to provide the gate overdrive voltage for a high-side NMOS transistor. The required charge has to be provided by a bootstrap capacitor which is often too large for integration if an acceptable voltage dip at the capacitor has to be guaranteed. Three options of an area efficient bootstrap circuit for a high side driver with an output stage of two NMOS transistors are proposed. The key idea is that the main bootstrap capacitor is supported by a second bootstrap capacitor, which is charged to a higher voltage and connected when the gate driver turns on. A high voltage swing at the second capacitor leads to a high charge allocation. Both bootstrap capacitors require up to 70% less area compared to a conventional bootstrap circuit. This enables compact power management systems with fewer discrete components and smaller die size. A calculation guideline for optimum bootstrap capacitor sizing is given. The circuit was manufactured in a 180nm high-voltage BiCMOS technology as part of a high-voltage gate driver. Measurements confirm the benefit of high-voltage charge storing. The fully integrated bootstrap circuit including two stacked 75.8pF and 18.9pF capacitors results in a voltage dip lower than 1V. This matches well with the theory of the calculation guideline.
Die Erfindung betrifft einen Energieübertrager (100) zur induktiven Energieübertragung von einem primären Schaltkreis (10) des Energieübertragers (100) an eine erste (5) und eine zweite (15) Spannungsdomäne eines sekundären Schaltkreises (20) des Energieübertragers (100) und zur Informationsübertragung vom sekundären Schaltkreis (20) zum primären Schaltkreis (10). Dabei umfasst der Energieübertrager (100): – einen Transformator (30), über den der primäre Schaltkreis (10) und der sekundäre Schaltkreis (20) induktiv miteinander gekoppelt sind und über den sowohl die Energieübertragung als auch die Informationsübertragung erfolgt; und – ein Amplitudenmodulationsmodul (50) zum Modulieren der Strom- und/oder Spannungsamplitude im sekundären Schaltkreis (20) mit Hilfe eines Amplitudenmodulationsschalters (55), wobei der Amplitudenmodulationsschalter (55) zwischen der ersten (5) und zweiten (15) Spannungsdomäne des sekundären Schaltkreises (20) angeordnet ist und ausgelegt ist, durch Öffnen und Schließen des Amplitudenmodulationsschalters (55) die Strom- und/oder Spannungsamplitude im primären Schaltkreis (10) zu ändern, um somit Information vom sekundären Schaltkreis (20) zum primären Schaltkreis (10) zu übertragen. Die vorliegende Erfindung betrifft ferner einen Gate-Treiber zum Schalten eines Leistungsschalters (500) und ein Verfahren zur induktiven Übertragung von Energie und zur kombinierten Informationsübertragung.