Refine
Document Type
- Journal article (3)
- Conference proceeding (2)
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
The early involvement of experiences gained through intelligence and data analysis is becoming increasingly important in order to develop new products, leading to a completely different conception of product creation, development and engineering processes using the advantages that the dedication of the digital twin entails. Introducing a novel stage gate process in order to be holistically anchored in learning factories adopting idea generation and idea screening in an early stage, beta testing of first prototypes, technical implementation in real production scenarios, business analysis, market evaluation, pricing, service models as well as innovative social media portals. Corresponding product modelling in the sense of sustainability, circular economy, and data analytics forecasts the product on the market both before and after market launch with the interlinking of data interpretation nearby in real-time. The digital twin represents the link between the digital model and the digital shadow. Additionally, the connection of the digital twin with the product provides constantly updated operating status and process data as well as mapping of technical properties and real-world behaviours. A future-networking product, by embedded information technology with the ability to initiate and carry out one's own further development, is able to interact with people and environments and thus is relevant to the way of life of future generations. In today's development work for this new product creation approach, on one hand, "Werk150" is the object of the development itself and on the other hand the validation environment. In the next step, new learning modules and scenarios for trainings at master level will be derived from these findings.
The proper selection of a demand forecasting method is directly linked to the success of supply chain management (SCM). However, today’s manufacturing companies are confronted with uncertain and dynamic markets. Consequently, classical statistical methods are not always appropriate for accurate and reliable forecasting. Algorithms of Artificial intelligence (AI) are currently used to improve statistical methods. Existing literature only gives a very general overview of the AI methods used in combination with demand forecasting. This paper provides an analysis of the AI methods published in the last five years (2017-2021). Furthermore, a classification is presented by clustering the AI methods in order to define the trend of the methods applied. Finally, a classification of the different AI methods according to the dimensionality of data, volume of data, and time horizon of the forecast is presented. The goal is to support the selection of the appropriate AI method to optimize demand forecasting.
Towards a model for holistic mapping of supply chains by means of tracking and tracing technologies
(2022)
The usage of tracking and tracing technologies not only enables transparency and visibility of supply chains but also offers far-reaching advantages for companies, such as ensuring product quality or reducing supplier risks. Increasing the amount of shared information supports both internal and external planning processes as well as the stability and resilience of globally operating value chains. This paper aims to differentiate and define the functionalities of tracking and tracing technologies that are frequently used interchangeably in literature. Furthermore, this paper incorporates influencing factors impacting a sequencing of the connected world in Industry4.0 supply chain networks. This includes legal influences, the embedment of supply chain-related standards, and new possibilities of emerging technologies. Finally, the results are summarized in a model for the holistic mapping of supply chains by means of tracking and tracing technologies. The resulting technological solutions that can be derived from the model enable companies to address missing elements in order to enable the holistic mapping of supply chain events as well as the transparent representation of a digital shadow throughout the entire supply chain.
The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.
The fifth mobile communications generation (5G) can lead to a substantial change in companies enabling the full capability of wireless industrial communication. 5G with its key features of providing Enhanced Mobile Broadband, Ultra-Reliable and Low-Latency Communication, and Massive Machine Type Communication will support the implementation of Industry 4.0 applications. In particular, the possibility to set-up Non-Public Networks provides the opportunity of 5G communication in factories and ensures sole access to the 5G infrastructure offering new opportunities for companies to implement innovative mobile applications. Currently there exist various concepts, ideas, and projects for 5G applications in an industrial environment. However, the global rollout of 5G systems is a continuous process based on various stages defined by the global initiative 3rd Generation Partnership Project that develops and specifies the 5G telecommunication standard. Accordingly, some services are currently still far from their final performance capability or not yet implemented. Additionally, research lacks in clarifying the general suitability of 5G regarding frequently mentioned 5G use cases. This paper aims to identify relevant 5G use cases for intralogistics and evaluates their technical requirements regarding their practical feasibility throughout the upcoming 5G specifications.