Refine
Document Type
Is part of the Bibliography
- yes (6)
Institute
- Technik (6)
Publisher
- VDE Verlag (2)
- IEEE (1)
IGBT modules with anti-parallel FWDs are widely used in inductive load switching power applications, such as motor drive applications. Nowadays there is a continuous effort to increase the efficiency of such systems by decreasing their switching losses. This paper addresses the problems arising in the turn-on process of an IGBT working in hard-switching conditions. A method is proposed which achieves – contrary to most other approaches – a high switching speed and, at the same time, a low peak reverse-recovery current. This is done by applying an improved gate current waveform that is briefly lowered during the turn-on process. The proposed method achieves low switching losses. Its effectiveness is demonstrated by experimental results with IGBT modules for 600V and 1200V.
An improved gate drive circuit is provided for a power device, such as a transistor. Tue gate driver circuit may in -clude: a current control circuit; a first secondary current source that is used to control the switching transient during turn off of the power transistor and a second secondary current source that is used to control the switching transient during turn on of the power transistor. In operation, the current control circuit operates, during turn on ofthe power transistor, to source a gate drive current to a control node ofthe power transistor and, during turn off ofthe power transistor, to sink a gate drive current from the control node of the power transistor. The first and second secondary current sources adjust the gate drive current to control the voltage or current rate of change and thereby the overshoot during the switching transient.
A TLP system with a very low characteristic impedance of 1.5 Ω and a selectable pulse length from 0.5 to 6 μs is presented. It covers the entire operation region of many power semiconductors up to 700 V and 400 A. Ist applicability is demonstrated by determining the Output characteristics for two Cool MOS devices up to destruction.
Die vorliegende Erfindung betrifft ein Transmission Line Pulssystem zum Erzeugen eines elektrischen Pulses, sowie ein diesbezügliches Verfahren. Dabei umfasst das Transmission Line Pulssystem: eine Transmission Line, eine Energieversorgungsquelle zum Aufladen der Transmission Line und einen Entladungsschalter zum Auslösen einer Entladung der aufgeladenen Transmission Line, dadurch gekennzeichnet, dass die Transmission Line eine Vielzahl von Einzelsegmenten umfasst, wobei jedes Einzelsegment über ein zugehöriges Einstellglied mit einem gemeinsamen Massepotential elektrisch verbunden ist, und wobei zumindest eines der Einstellglieder einen Einstellkondensator und einen Einstellschalter aufweist.
This paper addresses the turn-on switching process of insulated-gate bipolar transistor (IGBT) modules with anti-parallel free-wheeling diodes (FWD) used in inductive load switching power applications. An increase in efficiency, i.e. decrease in switching losses, calls for a fast switching process of the IGBT, but this commonly implies high values of the reverse-recovery current overshoot. To overcome this undesired behaviour, a solution was proposed which achieves an independent control of the collector current slope and peak reverse recovery current by applying a gate current that is briefly turned negative during the turn-on process. The feasibility of this approach has already been shown, however, a sophisticated control method is required for applying it in applications with varying currents, temperature and device parameters. In this paper a solution based on an adaptive, iterative closed-loop ontrol is proposed. Its effectiveness is demonstrated by experimental results from a 1200 V/200A IGBT power module for different load currents and reverse-recovery current overshoots.