Refine
Document Type
- Conference proceeding (8)
- Journal article (2)
Is part of the Bibliography
- yes (10)
Institute
- Informatik (10)
Workflow driven support systems in the peri-operative area have the potential to optimize clinical processes and to allow new situation-adaptive support systems. We started to develop a workflow management system supporting all involved actors in the operating theatre with the goal to synchronize the tasks of the different stakeholders by giving relevant information to the right team members. Using the OMG standards BPMN, CMMN and DMN gives us the opportunity to bring established methods from other industries into the medical field. The system shows each addressed actor their information in the right place at the right time to make sure every member can execute their task in time to ensure a smooth workflow. The system has the overall view of all tasks. Accordingly, a workflow management system including the Camunda BPM workflow engine to run the models, and a middleware to connect different systems to the workflow engine and some graphical user interfaces to show necessary information or to interact with the system are used. The complete pipeline is implemented with a RESTful web service. The system is designed to include different systems like hospital information system (HIS) via the RESTful web service very easily and without loss of data. The first prototype is implemented and will be expanded.
This paper contributes to the automatic detection of perioperative workflow by developing a binary endoscope localization. Automated situation recognition in the context of an intelligent operating room requires the automatic conversion of low level cues into more abstract high level information. Imagery from a laparoscope delivers rich content that is easy to obtain but hard to process. We introduce a system which detects if the endoscope's distal tip is inside or outsiede the patient based on the endoscope video. This information can be used as one parameter in a situation recognition pipeline. Our localization performs in real-time at a video resolution of 1280x720 and 5-fold cross validation yields mean F1-scores of up to 0,94 on videos of 7 laparoscopies.
Diese Arbeit liefert einen Konzeptentwurf, der die Integration verschiedener Systeme mit prozessrelevanten klinischen Diensten gewährleistet. Chirurgische Abläufe werden in Form von Prozessen modelliert. Die Wahl der Notation und die Art der Modellierung dieser Prozesse spielt in der heutigen Forschung in diesem Gebiet eine zentrale Rolle. Sind diese Prozesse modelliert, besteht die Möglichkeit, diese in einer Workflow-Engine automatisiert auszuführen. Im Rahmen der Entwicklung eines Workflow-Managment-Systems stellt sich die Frage, wie die Anbindung dieser Workflow-Engine mit anderen Systemen erfolgen soll. In der Arbeit werden Schnittstellen abstrakt in der Web Services Description Language (WSDL) definiert. Darum werden automatisiert Artefakte erzeugt. Auf der Grundlage dieser Artefakte erfolgt die Integration der Systeme. Die Workflow-Engine kommunizieren über SOAP-Nachrichten (Simple Object Access Protocol) mit den entsprechenden Systemen. Dieser Ansatz wurde mithilfe eines Prototyps validiert und umgesetzt.
In this paper a method for the generation of gSPM with ontology-based generalization was presented. The resulting gSPM was modeled with BPMN/BPMNsix in an efficient way and could be executed with BPMN workflow engines. In the next step the implementation of resource concepts, anatomical structures, and transition probabilities for workflow execution will be realized.
Informationstechnische Systeme, die den Arbeitsablauf im klinischen Bereich unterstützen, sind aktuell auf organisatorische Abläufe beschränkt. Diese Arbeit stellt einen ersten Ansatz vor, wie solch ein System in den perioperativen Bereich eingebracht werden kann. Hierzu wurde eine Workflow Engine mit einer perioperativen Prozess-Visualisierung verknüpft. Das System wurde nach Modell-View-Controller-Prinzip implementiert. Als "Controller" kommt die Workflow Engine zum Einsatz; also "Modell" ein Prozessmodell, mit den erforderlichen klinischen Daten. Der "View" wurde durch eine abgekoppelte Anwendung realisiert, welche auf Web-Technologien basiert. Drei Visualisierungen, die Workflow Engine sowie die Anbindung beider über eine Datenbankschnittstelle, wurden erfolgreich umgesetzt. Bei den drei Visualisierungen wurden jeweils eine Ansicht für den OP-Koordinator, den Springer und eine Ansicht für die Übersicht einer OP erstellt.
An operating room is a stressful work environment. Nevertheless, all involved persons have to work safely as there is no space for mistakes. To ensure a high level of concentration and seamless interaction, all involved persons have to know their own tasks and the tasks of their colleagues. The entire team must work synchronously at all times. To optimize the overall workflow, a task manager supporting the team was developed. In parallel, a common conceptual design of a business process visualization was developed, which makes all relevant information accessible in real-time during a surgery. In this context an overview of all processes in the operating room was created and different concepts for the graphical representation of these user-dependent processes were developed. This paper describes the concept of the task manager as well as the general concept in the field of surgery.
Information systems, which support the workflow in the clinical area, are currently limited to organizational processes. This work shows a first approach of an information system supporting all actors in the perioperative area. The first prototype and proof of concept was a task manager, giving all actors information about their task and the task of all other actors during an intervention. Based on this initial task manager, we implemented an information system based on a workflow engine controlling all processes and all information necessary for the intervention. A second part was the development of a perioperative process visualization which was developed based on a user centered approach jointly with clinicians and OR members.
Purpose: Medical processes can be modeled using different methods and notations.Currently used modeling systems like Business Process Model and Notation (BPMN) are not capable of describing the highly flexible and variable medical processes in sufficient detail.
Methods: We combined two modeling systems, Business Process Management (BPM) and Adaptive Case Management (ACM), to be able to model non-deterministic medical processes. We used the new Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN).
Results: First, we explain how CMMN, DMN and BPMN could be used to model non-deterministic medical processes. We applied this methodology to model 79 cataract operations provided by University Hospital Leipzig, Germany, and four cataract operations provided by University Eye Hospital Tuebingen, Germany. Our model consists of 85 tasks and about 20 decisions in BPMN. We were able to expand the system with more complex situations that might appear during an intervention.
Conclusion: An effective modeling of the cataract intervention is possible using the combination of BPM and ACM. The combination gives the possibility to depict complex processes with complex decisions. This combination allows a significant advantage for modeling perioperative processes.
Model-guided Therapy and Surgical Workflow Systems are two interrelated research fields, which have been developed separately in the last years. To make full use of both technologies, it is necessary to integrate them and connect them to Hospital Information Systems. We propose a framework for integration of Model-guided Therapy in Hospital Information Systems based on the Electronic Medical Record, and a taskbased Workflow Management System, which is suitable for clinical end users. Two prototypes - one based on Business Process Modeling Language, one based on the serum-board - are presented. From the experience with these prototypes, we developed a novel personalized visualization system for Surgical Workflows and Model-guided Therapy. Key challenges for further development are automated situation detection and a common communication infrastructure.
An operation room is a stressful work environment. Nevertheless, all involved persons have to work safely as there is no space for making mistakes. To ensure a high level of concentration and seamless interaction, all involved persons have to know their own tasks and tasks of their colleagues. The entire team must work synchronously at all times. However, the operation room (OR) is a noisy environment and the actors have to set their focus on their work. To optimize the overall workflow, a task manager supporting the team was developed. Each actor is equipped with a client terminal showing a summary of their own tasks. Moreover, a big screen displays all tasks of all actors. The architecture is a distributed system based on a communication framework that supports the interaction of all clients with the task manager. A prototype of the task manager and several clients have been developed and implemented. The system represents a proof-of-concept for further development. This paper describes the concept of the task manager.