Refine
Document Type
- Journal article (3)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- ARVO (1)
- PLOS (1)
- Sage Publishing (1)
Motor-based theories of facial expression recognition propose that the visual perception of facial expression is aided by sensorimotor processes that are also used for the production of the same expression. Accordingly, sensorimotor and visual processes should provide congruent emotional information about a facial expression. Here, we report evidence that challenges this view. Specifically, the repeated execution of facial expressions has the opposite effect on the recognition of a subsequent facial expression than the repeated viewing of facial expressions. Moreover, the findings of the motor condition, but not of the visual condition, were correlated with a nonsensory condition in which participants imagined an emotional situation. These results can be well accounted for by the idea that facial expression recognition is not always mediated by motor processes but can also be recognized on visual information alone.
Perceptual integration of kinematic components in the recognition of emotional facial expressions
(2018)
According to a long-standing hypothesis in motor control, complex body motion is organized in terms of movement primitives, reducing massively the dimensionality of the underlying control problems. For body movements, this low dimensional organization has been convincingly demonstrated by the learning of low-dimensional representations from kinematic and EMG data. In contrast, the effective dimensionality of dynamic facial expressions is unknown, and dominant analysis approaches have been based on heuristically defined facial ‘‘action units,’’ which reflect contributions of individual face muscles. We determined the effective dimensionality of dynamic facial expressions by learning of a low dimensional model from 11 facial expressions. We found an amazingly low dimensionality with only two movement primitives being sufficient to simulate these dynamic expressions with high accuracy. This low dimensionality is confirmed statistically, by Bayesian model comparison of models with different numbers of primitives, and by a psychophysical experiment that demonstrates that expressions, simulated with only two primitives, are indistinguishable from natural ones.
In addition, we find statistically optimal integration of the emotion information specified by these primitives in visual perception. Taken together, our results indicate that facial expressions might be controlled by a very small number of independent control units, permitting very low dimensional parametrization of the associated facial expression.
Putting actions in context: visual action adaptation aftereffects are modulated by social contexts
(2014)
The social context in which an action is embedded provides important information for the interpretation of an action. Is this social context integrated during the visual recognition of an action? We used a behavioural visual adaptation paradigm to address this question and measured participants’ perceptual bias of a test action after they were adapted to one of two adaptors (adaptation after-effect). The action adaptation after effect was measured for the same set of adaptors in two different social contexts. Our results indicate that the size of the adaptation effect varied with social context (social context modulation) although the physical appearance of the adaptors remained unchanged. Three additional experiments provided evidence that the observed social context modulation of the adaptation effect are owed to the adaptation of visual action recognition processes. We found that adaptation is critical for the social context modulation (experiment 2). Moreover, the effect is not mediated by emotional content of the action alone (experiment 3) and visual information about the action seems to be critical for the emergence of action adaptation effects (experiment 4). Taken together these results suggest that processes underlying visual action recognition are sensitive to the social context of an action.