Refine
Document Type
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- IEEE (3)
In any autonomous driving system, the map for localization plays a vital part that is often underestimated. The map describes the world around the vehicle outside of the sensor view and is a main input into the decision making process in highly complicated scenarios. Thus there are strict requirements towards the accuracy and timeliness of the map. We present a robust and reliable approach towards crowd based mapping using a GraphSLAM framework based on radar sensors. We show on a parking lot that even in dynamically changing environments, the localization results are very accurate and reliable even in unexplored terrain without any map data. This can be achieved by collaborative map updates from multiple vehicles. To show these claims experimentally, the Joint Graph Optimization is compared to the ground truth on an industrial parking space. Mapping performance is evaluated using a dense map from a total station as reference and localization results are compared with a deeply coupled DGPS/INS system.
Significant advances have been achieved in mobile robot localization and mapping in dynamic environments, however these are mostly incapable of dealing with the physical properties of automotive radar sensors. In this paper we present an accurate and robust solution to this problem, by introducing a memory efficient cluster map representation. Our approach is validated by experiments that took place on a public parking space with pedestrians, moving cars, as well as different parking configurations to provide a challenging dynamic environment. The results prove its ability to reproducibly localize our vehicle within an error margin of below 1% with respect to ground truth using only point based radar targets. A decay process enables our map representation to support local updates.
On the way to achieving higher degrees of autonomy for vehicles in complicated, ever changing scenarios, the localization problem poses a very important role. Especially the Simultaneous Localization and Mapping (SLAM) problem has been studied greatly in the past. For an autonomous system in the real world, we present a very cost-efficient, robust and very precise localization approach based on GraphSLAM and graph optimization using radar sensors. We are able to prove on a dynamically changing parking lot layout that both mapping and localization accuracy are very high. To evaluate the performance of the mapping algorithm, a highly accurate ground truth map generated from a total station was used. Localization results are compared to a high precision DGPS/INS system. Utilizing these methods, we can show the strong performance of our algorithm.