Refine
Document Type
- Conference proceeding (2)
- Book (1)
- Book chapter (1)
Is part of the Bibliography
- yes (4)
Institute
- Informatik (4)
Publisher
- Gesellschaft für Informatik e.V (2)
- Springer (1)
- dpunkt-Verlag (1)
The character of knowledge-intense processes is that participants decide the next process activities on base of the present information and their expert knowledge. The decisions of these knowledge workers are in general non-deterministic. It is not possible to model these processes in advance and to automate them using a process engine of a BPM system. Hence, in this context a process instance is called a case, because there is no predefined model that could be instantiated. Domain-specific or general case management systems are used to support the knowledge workers. These systems provide all case information and enable users to define the next activities, but they have no or only limited activity recommendation capabilities. In the following paper, we present a general concept for a self-learning system based on process mining that suggests the next best activity on quantitative and qualitative data for a given case. As a proof of concept, it was applied to the area of insurance claims settlement.
Workshop Java EE 7 : ein praktischer Einstieg in die Java Enterprise Edition mit dem Web Profile
(2015)
Dieses Arbeitsbuch bietet Ihnen eine praktische Einführung in die Entwicklung von Business- Anwendungen mit Java EE 7. Schrittweise erstellen Sie eine einfach nachvollziehbare Beispielanwendung auf Grundlage des Web Profile. Dabei lernen Sie alle wichtigen Technologien und Konzepte von Java EE 7 kennen, u.a.: Grafische Oberflächen mit JavaServer Faces und HTML5; Business-Logik mit CDI und EJB; Persistenz mit JPA; Kommunikation mit REST, SOAP und WebSockets; Erweiterte Konzepte wie Resource Library Contracts, Interceptors, Transaktionen, Timer und Security. Über Java EE 7 hinaus wird auch auf weitere praxisrelevante Themen wie Build Management und Testing eingegangen. Das Deployment wird auf den Applikationsservern WildFly 8 und Glassfish 4 sowie über das Cloud-Angebot OpenShift durchgeführt. Am Ende einer jeden Entwicklungsphase finden Sie Übungen und Fragen zur Lernkontrolle.Nach der erfolgreichen Lektüre sind Sie in der Lage, Java-EE-7-Anwendungen selbständig aufzusetzen, zu entwickeln und auf einem Anwendungsserver zu verteilen. Kenntnisse in der Entwicklung mit Java werden vorausgesetzt. Grundlagen von HTML und der Architektur von Webanwendungen sind hilfreich. In der 2. Auflage wird nun auch die Internationalisierung sowie die Erstellung funktionaler Tests mit Graphene behandelt.
Digital companies need information systems to implement their business processes end-to-end. BPM systems are promising candidates for that, because they are highly adaptable due to their business process model-driven operation mode. End-to-end processes contain different types of sub-processes that are either procedural, data-driven or business rule-based. Modern BPM systems support modeling notations for all these types of sub-processes. Moreover, end-to-end processes contain parts of shadow processing, so consequently, they must be supported in a performant way, too. BPMN seems to be the adequate notation for modeling these parts due to its procedural nature. Further, BPMN provides several elements that enable the modeling of parallel executions which are very interesting for accelerating shadow processing parts of the process. The present paper will observe the limitations and potentials of BPM systems for a high-performance execution of BPMN models representing shadow processing parts of a business process.
Companies are constantly changing their business process models. In team environments, different versions of a process model are created at the same time. These versions of a process model need to be merged from time to time to consolidate changes and create a new common version.
In this short paper, we propose a solution for modifying a merge result. The goal is to create a meaningful merge result by adding connector nodes to the model at specific locations. This increases the amount of possible result models and reduces additional implementation effort.