Refine
Document Type
- Conference proceeding (18)
- Journal article (12)
Language
- English (30)
Is part of the Bibliography
- yes (30)
Institute
- Technik (30)
- Informatik (2)
Publisher
We presented our robot framework and our efforts to make face analysis more robust towards self-occlusion caused by head pose. By using a lightweight linear fitting algorithm, we are able to obtain 3D models of human faces in real-time. The combination of adaptive tracking and 3D face modelling for the analysis of human faces is used as a basis for further research on human-machine interaction on our SCITOS robot platform.
In recent years robotic systems have matured enough to perform simple home or office tasks, guide visitors in environments such as museums or stores and aid people in their daily life. To make the interaction with service and even industrial robots as fast and intuitive as possible, researchers strive to create transparent interfaces close to human-human interaction. As facial expressions play a central role in human-human communication, robot faces were implemented with varying degrees of human-likeness and expressiveness. We propose an emotion model to parameterize a screen based facial animation via inter-process communication. A software will animate transitions and add additional animations to make a digital face appear “alive” and equip a robotic system with a virtual face. The result will be an inviting appearance to motivate potential users to seek interaction with the robot.
In this paper, we propose a novel fitting method that uses local image features to fit a 3D morphable face model to 2D images. To overcome the obstacle of optimising a cost function that contains a non-differentiable feature extraction operator, we use a learning-based cascaded regression method that learns the gradient direction from data. The method allows to simultaneously solve for shape and pose parameters. Our method is thoroughly evaluated on morphable model generated data and first results on real data are presented. Compared to traditional fitting methods, which use simple raw features like pixel colour or edge maps, local features have been shown to be much more robust against variations in imaging conditions. Our approach is unique in that we are the first to use local features to fit a 3D morphable model. Because of the speed of our method, it is applicable for realtime applications. Our cascaded regression framework is available as an open source library at github.com/patrikhuber/ superviseddescent.
We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. We use a 3D morphable face model to obtain a semi-dense shape and combine it with a fast median-based super-resolution technique to obtain a high-fidelity textured 3D face model. Our system does not need prior training and is designed to work in uncontrolled scenarios.
In visual adaptive tracking, the tracker adapts to the target, background, and conditions of the image sequence. Each update introduces some error, so the tracker might drift away from the target over time. To increase the robustness against the drifting problem, we present three ideas on top of a particle filter framework: An optical-flow-based motion estimation, a learning strategy for preventing bad updates while staying adaptive, and a sliding window detector for failure detection and finding the best training examples. We experimentally evaluate the ideas using the BoBoT dataseta. The code of our tracker is available online.
A 3D face modelling approach for pose-invariant face recognition in a human-robot environment
(2017)
Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis.
We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. With the use of a cascaded-regressor-based face tracking and a 3D morphable face model shape fitting, we obtain a semidense 3D face shape. We further use the texture information from multiple frames to build a holistic 3D face representation from the video footage. Our system is able to capture facial expressions and does not require any person specific training. We demonstrate the robustness of our approach on the challenging 300 Videos in the Wild (300- VW) dataset. Our real-time fitting framework is available as an open-source library at http://4dface.org.
”I have never seen one who loves virtue as much as he loves beauty,” Confucius once said. If beauty is more important as goodness, it becomes clear why people invest so much effort in their first impression. The aesthetic of faces has many aspects and there is a strong correlation to all characteristics of humans, like age and gender. Often, research on aesthetics by social and ethic scientists lacks sufficient labelled data and the support of machine vision tools. In this position paper we propose the Aesthetic-Faces dataset, containing training data which is labelled by Chinese and German annotators. As a combination of three image subsets, the AF-dataset consists of European, Asian and African people. The research communities in machine learning, aesthetics and social ethics can benefit from our dataset and our toolbox. The toolbox provides many functions for machine learning with state-of-the-art CNNs and an Extreme-Gradient-Boosting regressor, but also 3D Morphable Model technolo gies for face shape evaluation and we discuss how to train an aesthetic estimator considering culture and ethics.
Aimed at the problem that the accuracy of face image classification in complex environment is not high, a network model F-Net suitable for aesthetic classification of face images is proposed. Based on LeNet-5, the model uses convolutional layers to extract facial image features in complex backgrounds, optimized parameters in the network model, and changes the number of convolutional layers and fully connected layer feature elements in the model. The experimental results show that the F-Net network model proposed in this paper has a face image classifation accuracy of 73% in complex environment background, which is better than other classical convolutional neural network classification models.
3D morphable face models are a powerful tool in computer vision. They consist of a PCA model of face shape and colour information and allow to reconstruct a 3D face from a single 2D image. 3D morphable face models are used for 3D head pose estimation, face analysis, face recognition, and, more recently, facial landmark detection and tracking. However, they are not as widely used as 2D methods - the process of building and using a 3D model is much more involved.
In this paper, we present the Surrey Face Model, a multi resolution 3D morphable model that we make available to the public for non-commercial purposes. The model contains different mesh resolution levels and landmark point annotations as well as metadata for texture remapping. Accompanying the model is a lightweight open-source C++ library designed with simplicity and ease of integration as its foremost goals. In addition to basic functionality, it contains pose estimation and face frontalisation algorithms. With the tools presented in this paper, we aim to close two gaps. First, by offering different model resolution levels and fast fitting functionality, we enable the use of a 3D Morphable Model in time-critical applications like tracking. Second, the software library makes it easy for the community to adopt the 3D morphable face model in their research, and it offers a public place for collaboration.