Refine
Document Type
- Conference proceeding (34)
- Journal article (26)
Is part of the Bibliography
- yes (60)
Institute
- Technik (59)
- Informatik (2)
- Texoversum (2)
- Zentrale Einrichtungen (1)
Publisher
- Springer (13)
- IEEE (12)
- SciTePress (7)
- Elsevier (4)
- Association for Computing Machinery (2)
- International Academy Publishing (2)
- SPIE. The International Society for Optical Engineering (2)
- Sage (2)
- Science and Technology Publications (2)
- Berufsverband Österreichischer Psychologinnen und Psychologen (1)
In visual adaptive tracking, the tracker adapts to the target, background, and conditions of the image sequence. Each update introduces some error, so the tracker might drift away from the target over time. To increase the robustness against the drifting problem, we present three ideas on top of a particle filter framework: An optical-flow-based motion estimation, a learning strategy for preventing bad updates while staying adaptive, and a sliding window detector for failure detection and finding the best training examples. We experimentally evaluate the ideas using the BoBoT dataseta. The code of our tracker is available online.
We presented our robot framework and our efforts to make face analysis more robust towards self-occlusion caused by head pose. By using a lightweight linear fitting algorithm, we are able to obtain 3D models of human faces in real-time. The combination of adaptive tracking and 3D face modelling for the analysis of human faces is used as a basis for further research on human-machine interaction on our SCITOS robot platform.
In this paper, we propose a novel fitting method that uses local image features to fit a 3D morphable face model to 2D images. To overcome the obstacle of optimising a cost function that contains a non-differentiable feature extraction operator, we use a learning-based cascaded regression method that learns the gradient direction from data. The method allows to simultaneously solve for shape and pose parameters. Our method is thoroughly evaluated on morphable model generated data and first results on real data are presented. Compared to traditional fitting methods, which use simple raw features like pixel colour or edge maps, local features have been shown to be much more robust against variations in imaging conditions. Our approach is unique in that we are the first to use local features to fit a 3D morphable model. Because of the speed of our method, it is applicable for realtime applications. Our cascaded regression framework is available as an open source library at github.com/patrikhuber/ superviseddescent.
Socially interactive robots with human-like speech synthesis and recognition, coupled with humanoid appearance, are an important subject of robotics and artificial intelligence research. Modern solutions have matured enough to provide simple services to human users. To make the interaction with them as fast and intuitive as possible, researchers strive to create transparent interfaces close to human-human interaction. Because facial expressions play a central role in human-human communication, robot faces were implemented with varying degrees of human-likeness and expressiveness. We propose a way to implement a program that believably animates changing facial expressions and allows to influence them via inter-process communication based on an emotion model. This will can be used to create a screen based virtual face for a robotic system with an inviting appearance to stimulate users to seek interaction with the robot.
In recent years robotic systems have matured enough to perform simple home or office tasks, guide visitors in environments such as museums or stores and aid people in their daily life. To make the interaction with service and even industrial robots as fast and intuitive as possible, researchers strive to create transparent interfaces close to human-human interaction. As facial expressions play a central role in human-human communication, robot faces were implemented with varying degrees of human-likeness and expressiveness. We propose an emotion model to parameterize a screen based facial animation via inter-process communication. A software will animate transitions and add additional animations to make a digital face appear “alive” and equip a robotic system with a virtual face. The result will be an inviting appearance to motivate potential users to seek interaction with the robot.
An interactive clothing design and a personalized virtual display with user’s own face are presented in this paper to meet the requirement of personalized clothing customization. A customer interactive clothing design approach based on genetic engineering ideas is analyzed by taking suit as an example. Thus, customers could rearrange the clothing style elements, chose available color, fabric and come up with their own personalized suit style. A web 3D customization prototype system of personalized clothing is developed based on the Unity3D and VR technology. The layout of the structure and functions combined with the flow of the system are given. Practical issues such as 3D face scanning, suit style design, fabric selection, and accessory choices are addressed also. Tests to the prototype system indicate that it could show realistic clothing and fabric effect and offer effective visual and customization experience to users.
This paper investigates the evaluation of dense 3D face reconstruction from a single 2D image in the wild. To this end, we organise a competition that provides a new benchmark dataset that contains 2000 2D facial images of 135 subjects as well as their 3D ground truth face scans. In contrast to previous competitions or challenges, the aim of this new benchmark dataset is to evaluate the accuracy of a 3D dense face reconstruction algorithm using real, accurate and high-resolution 3D ground truth face scans. In addition to the dataset, we provide a standard protocol as well as a Python script for the evaluation. Last, we report the results obtained by three state-of-the-art 3D face reconstruction systems on the new benchmark dataset. The competition is organised along with the 2018 13th IEEE Conference on Automatic Face & Gesture Recognition.
Annotations of subject IDs in images are very important as ground truth for face recognition applications and news retrieval systems. Face naming is becoming a significant research topic in news image indexing applications. By exploiting the uniqueness of name, face naming is transformed to the problem of multiple instance learning (MIL) with exclusive constraint, namely the eMIL problem. First, the positive bags and the negative bags are automatically annotated by a hybrid recurrent convolutional neural network and a distributed affinity propagation cluster. Next, positive instance selection and updating are used to reduce the influence of false-positive bag and to improve the performance. Finally, max exclusive density and iterative Max-ED algorithms are proposed to solve the eMIL problem. The experimental results show that the proposed algorithms achieve a significant improvement over other algorithms.
Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.
SLAM systems are mainly applied for robot navigation while research on feasibility for motion planning with SLAM for tasks like bin-picking, is scarce. Accurate 3D reconstruction of objects and environments is important for planning motion and computing optimal gripper pose to grasp objects. In this work, we propose the methods to analyze the accuracy of a 3D environment reconstructed using a LSD-SLAM system with a monocular camera mounted onto the gripper of a collaborative robot. We discuss and propose a solution to the pose space conversion problem. Finally, we present several criteria to analyze the 3D reconstruction accuracy. These could be used as guidelines to improve the accuracy of 3D reconstructions with monocular LSD-SLAM and other SLAM based solutions.