Refine
Document Type
- Journal article (4)
- Conference proceeding (2)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Institute
- Technik (6)
DMOS transistors in integrated smart power technologies are often subject to cyclic power dissipation with substantial selfheating. This leads to repetitive thermo mechanical stress, causing fatigue of the on-chip metallization and limiting the lifetime. Hence, most designs use large devices for lower peak temperatures and thus reduced stress to avoid premature failures.
However, significantly smaller DMOS transistors are acceptable if the system reverts to a safer operating condition with lower stress when a failure is expected to occur in the near future. Hence, suitable early-warning sensors are required. This paper proposes a floating metal meander embedded between DMOS source and drain to detect an impending metallization failure. Measurement results of several variants will be presented and discussed, investigating their suitability as early warning indicators.
Integrated power semiconductors are often used for applications with cyclic on-chip power dissipation. This leads to repetitive self-heating and thermo-mechanical stress, causing fatigue on the on-chip metallization and possibly destruction by short circuits. Because of this, an accurate simulation of the thermo-mechanical stress is needed already during the design phase to ensure that lifetime requirements are met. However, a detailed thermo mechanical simulation of the device, including the on-chip metallization is prohibitively time-consuming due to its complex structure, typically consisting of many thin metal lines with thousands of vias. This paper introduces a two-step approach as a solution for this problem. First, a simplified but fast simulation is performed to identify the device parts with the highest stress. After, precise simulations are carried out only for them. The applicability of this method is verified experimentally for LDMOS transistors with different metal configurations. The measured lifetimes and failure locations correlate well with the simulations. Moreover, a strong influence of the layout of the on-chip metallization lifetime was observed. This could also be explained with the simulation
method.
LDMOS transistors in integrated power technologies are often subject to thermo-mechanical stress, which degrades the on-chip metallization and eventually leads to a short. This paper investigates small sense lines embedded in the LDMOS metallization. It will be shown that their resistance depends strongly on the stress cycle number. Thus, they can be used as aging sensors and predict impending failures. Different test structures have been investigated to identify promising layout configurations. Such sensors are key components for resilient systems that adaptively reduce stress to allow aggressive LDMOS scaling without increasing the risk of failure.
Influence of metallization layout on aging detector lifetime under cyclic thermo-mechanical stress
(2016)
The influence of the layout on early warning detectors in BCD technologies for metallization failure under cyclic thermo-mechanical stress was investigated. Different LDMOS transistors, with narrow or wide metal fingers and with or without embedded detectors, were used. The test structures were repeatedly stressed by pronounced self-heating until failure (a short circuit) was detected. The results show that the layout of the on-chip metallization has a large impact on the lifetime. A significant influence of the detectors on the lifetime was also observed, in our case causing a reduction of more than a factor of two, but only for the test structure with narrow metal fingers. The experimental results are explained by an efficient numerical thermo mechanical simulation approach, giving detailed insights into the strain distribution in the metal system. These results are important for aging detector design and, morever, for LDMOS on-chip metal layout in general.
In many automotive applications, repetitive selfheating is the most critical operation condition for LDMOS transistors in smart power ICs. This is attributed to thermomechanical stress in the on-chip metallization, which results from the different thermal expansion coefficients of the metal and the intermetal dielectric. After many cycles, the accumulated strain in the metallization can lead to short circuits, thus limiting the lifetime. Increasing the LDMOS size can help to lower peak temperatures and therefore to reduce the stress. The downside of this is a higher cost. Hence, it has been suggested to use resilient systems that monitor the LDMOS metallization and lower the stress once a certain level of degradation is reached. Then, lifetime requirements can be fulfilled without oversizing LDMOS transistors, even though a certain performance loss has to be accepted. For such systems, suitable sensors for metal degradation are required. This work proposes a floating metal line embedded in the LDMOS metallization. The suitability of this approach has been investigated experimentally by test structures and shown to be a promising candidate. The obtained results will be explained by means of numerical thermo-mechanical simulations.
On-chip metallization, especially in modern integrated BCD technologies, is often subject to high current densities and pronounced temperature cycles due to heat dissipation from power switches like LDMOS transistors. This paper continues the work on a sensor concept where small sense lines are embedded in the metallization layers above the active area of a switching LDMOS transistor. The sensors show a significant resistance change that correlates with the number of power cycles. Furthermore, influences of sense line layer, geometry and the dissipated energy are shown. In this paper, the focus lies on a more detailed analysis of the observed change in sense line resistance.