Refine
Document Type
- Conference proceeding (5)
- Journal article (2)
Is part of the Bibliography
- yes (7)
Institute
- Technik (7)
Publisher
- IEEE (2)
- ACM (1)
- VDE (1)
- VDE Verlag GmbH (1)
- WEKA Fachmedien GmbH (1)
- WEKA Fachzeitschr.-Verl. (1)
Anders als Digital-ICs, die hochautomatisiert entworfen werden können, ist der Entwurf analoger ICs bis heute Handarbeit. Übliche auf Optimierung basierende Automatisierungsverfahren scheitern. Die Ursachen wurden jetzt in einem Forschungsprojekt untersucht, um neue Ansätze zur Entwurfsautomatisierung analoger ICs abzuleiten.
In this paper, we address the novel EDP (Expert Design Plan) principle for procedural design automation of analog integrated circuits, which captures the knowledge-based design strategy of human circuit designers in an executable script, making it reusable. We present the EDP Player, which enables the creation and execution of EDPs for arbitrary circuits in the Cadence® Virtuoso® Design Environment. The tool provides a generic version of an instruction set, called EDPL (EDPLanguage), enabling emulation of a typical manual analog sizing flow. To automate the design of a Miller Operational Amplifier and to create variants of a Smart Power IC, several EDPs were implemented using this tool. Employing these EDPs leads to a strong reduction of design time without compromising design quality or reliability.
Simple MOSFET models intended for hand analysis are inaccurate in deep sub-micrometer process technologies and in the moderate inversion region of device operation. Accurate models, such as the Berkeley BSIM6 model, are too complex for use in hand analysis and are intended for circuit simulators. Artificial neural networks (ANNs) are efficient at capturing both linear and non-linear multivariate relationships. In this work, a straightforward modeling technique is presented using ANNs to replace the BSIM model equations. Existing open-source libraries are used to quickly build models with error rates generally below 3%. When combined with a novel approach, such as the gm/Id systematic design method, the presented models are sufficiently accurate for use in the initial sizing of analog circuit components without simulation.
This paper presents an improvement in usability and integrity of simulation-based analog circuit sizing. Instead of using geometrical sizing parameters (width, length), a transformed design-space, consisting exclusively of electrical parameters (branch currents, efficiencies and speed) is utilized. This design-space is explored more efficiently by optimizers. Moreover, this design-space can be reduced without affecting the quality of the result. The method is illustrated on two application examples, a symmetrical and a miller operational amplifier. Sizing the circuits using the transformed design-space showed significant reduction in required circuit simulations (up to 11x faster), better convergence, without loss in quality.
This paper presents a machine learning powered, procedural sizing methodology based on pre-computed look-up tables containing operating point characteristics of primitive devices. Several Neural Networks are trained for 90nm and 45nm technologies, mapping different electrical parameters to the corresponding dimensions of a primitive device. This transforms the geometric sizing problem into the domain of circuit design experts, where the desired electrical characteristics are now inputs to the model. Analog building blocks or entire circuits are expressed as a sequence of model evaluations, capturing the sizing strategy and intention of the designer in a procedure, which is reusable across different technology nodes. The methodology is employed for the sizing of two operational amplifiers, and evaluated for two technology nodes, showing the versatility and efficiency of this approach.
This paper presents a toolbox in Matlab/Octave for procedural design of analog integrated circuits. The toolbox contains all native functions required by analog designers (namely, schematic-generation, simulation setup and execution, integrated look-up tables and functions for design space exploration) to capture an entire design strategy in an executable script. This script - which we call an Expert Design Plan (EDP) - is capable of executing an analog circuit design fully automatically. The toolbox is integrated in an existing design flow. A bandgap reference voltage circuit is designed with this tool in less than 15 min.