Refine
Document Type
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Technik (5)
- Informatik (1)
Publisher
- SCITEPRESS (2)
- Cornell University (1)
- SciTePress (1)
- Springer International Publishing (1)
”I have never seen one who loves virtue as much as he loves beauty,” Confucius once said. If beauty is more important as goodness, it becomes clear why people invest so much effort in their first impression. The aesthetic of faces has many aspects and there is a strong correlation to all characteristics of humans, like age and gender. Often, research on aesthetics by social and ethic scientists lacks sufficient labelled data and the support of machine vision tools. In this position paper we propose the Aesthetic-Faces dataset, containing training data which is labelled by Chinese and German annotators. As a combination of three image subsets, the AF-dataset consists of European, Asian and African people. The research communities in machine learning, aesthetics and social ethics can benefit from our dataset and our toolbox. The toolbox provides many functions for machine learning with state-of-the-art CNNs and an Extreme-Gradient-Boosting regressor, but also 3D Morphable Model technolo gies for face shape evaluation and we discuss how to train an aesthetic estimator considering culture and ethics.
3D assisted 2D face recognition involves the process of reconstructing 3D faces from 2D images and solving the problem of face recognition in 3D. To facilitate the use of deep neural networks, a 3D face, normally represented as a 3D mesh of vertices and its corresponding surface texture, is remapped to image-like square isomaps by a conformal mapping. Based on previous work, we assume that face recognition benefits more from texture. In this work, we focus on the surface texture and its discriminatory information content for recognition purposes. Our approach is to prepare a 3D mesh, the corresponding surface texture and the original 2D image as triple input for the recognition network, to show that 3D data is useful for face recognition. Texture enhancement methods to control the texture fusion process are introduced and we adapt data augmentation methods. Our results show that texture-map-based face recognition can not only compete with state-of-the-art systems under the same precon ditions but also outperforms standard 2D methods from recent years.
For collision and obstacle avoidance as well as trajectory planning, robots usually generate and use a simple 2D costmap without any semantic information about the detected obstacles. Thus a robot’s path planning will simply adhere to an arbitrarily large safety margin around obstacles. A more optimal approach is to adjust this safety margin according to the class of an obstacle. For class prediction, an image processing convolutional neural network can be trained. One of the problems in the development and training of any neural network is the creation of a training dataset. The first part of this work describes methods and free open source software, allowing a fast generation of annotated datasets. Our pipeline can be applied to various objects and environment settings and is extremely easy to use to anyone for synthesising training data from 3D source data. We create a fully synthetic industrial environment dataset with 10 k physically-based rendered images and annotations. Our da taset and sources are publicly available at https://github.com/LJMP/synthetic-industrial-dataset. Subsequently, we train a convolutional neural network with our dataset for costmap safety class prediction. We analyse different class combinations and show that learning the safety classes end-to-end directly with a small dataset, instead of using a class lookup table, improves the quantity and precision of the predictions.
Facial beauty prediction (FBP) aims to develop a machine that automatically makes facial attractiveness assessment. In the past those results were highly correlated with human ratings, therefore also with their bias in annotating. As artificial intelligence can have racist and discriminatory tendencies, the cause of skews in the data must be identified. Development of training data and AI algorithms that are robust against biased information is a new challenge for scientists. As aesthetic judgement usually is biased, we want to take it one step further and propose an Unbiased Convolutional Neural Network for FBP. While it is possible to create network models that can rate attractiveness of faces on a high level, from an ethical point of view, it is equally important to make sure the model is unbiased. In this work, we introduce AestheticNet, a state-of-the-art attractiveness prediction network, which significantly outperforms competitors with a Pearson Correlation of 0.9601. Additionally, we propose a new approach for generating a bias-free CNN to improve fairness in machine learning.
In the last 20 years there have been major advances in autonomous robotics. In IoT (Industry 4.0), mobile robots require more intuitive interaction possibilities with humans in order to expand its field of applications. This paper describes a user-friendly setup, which enables a person to lead the robot in an unknown environment. The environment has to be perceived by means of sensory input. For realizing a cost and resource efficient Follow Me application we use a single monocular camera as low-cost sensor. For efficient scaling of our Simultaneous Localization and Mapping (SLAM) algorithm, we integrate an inertial measurement unit (IMU) sensor. With the camera input we detect and track a person. We propose combining state of the art deep learning with Convolutional Neural Network (CNN) and SLAM algorithms functionality on the same input camera image. Based on the output robot navigation is possible. This work presents the specification, workflow for an efficient development of the Follow Me application. Our application’s delivered point clouds are also used for surface construction. For demonstration, we use our platform SCITOS G5 equipped with the afore mentioned sensors. Preliminary tests show the system works robustly in the wild.