Refine
Document Type
- Article (6)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Institute
- Life Sciences (6)
Publisher
- Elsevier Science (3)
- Elsevier (1)
- Ochre Media (1)
- Taylor & Francis Group (1)
Artificial intelligence (AI) technologies, such as machine learning or deep learning, have been predicted to highly impact future organizations and radically change the way how projects are managed. The Project Management Institute (PMI), the network of around 1.1 million certified project managers, ranked AI as one of the top three disruptors of their profession. In an own study on the effect of AI, 37% of the project management processes can be executed by machine learning and other AI technologies. In addition, Gartner recently postulated that 80% of the work of today's project managers may be eliminated by AI in 2030.
This editorial aims to outline today's project and portfolio management in context of pharmaceutical research and development (R&D), followed by an AI-vision and a more tangible mission, and illustrate what the consequences of an AI-enabled project and portfolio management could be for pharmaceutical R&D.
Comparative analysis of the R&D efficiency of 14 leading pharmaceutical companies for the years 1999–2018 shows that there is a close positive correlation between R&D spending and the two investigated R&D output parameters, approved NMEs and the cumulative impact factor of their publications. In other words, higher R&D investments (input) were associated with higher R&D output. Second, our analyses indicate that there are ‘economies of scale’ (size) in pharmaceutical R&D.
We investigated the state of artificial intelligence (AI) in pharmaceutical research and development (R&D) and outline here a risk and reward perspective regarding digital R&D. Given the novelty of the research area, a combined qualitative and quantitative research method was chosen, including the analysis of annual company reports, investor relations information, patent applications, and scientific publications of 21 pharmaceutical companies for the years 2014 to 2019. As a result, we can confirm that the industry is in an ‘early mature’ phase of using AI in R&D. Furthermore, we can demonstrate that, despite the efforts that need to be managed, recent developments in the industry indicate that it is worthwhile to invest to become a ‘digital pharma player’.
Pharmaceutical companies are among the top investors into research and development (R&D) globally, as product innovation is still the main growth driver for the industry and because the related complexities necessitate enormous R&D investments. The market demand for new medicines to be more efficacious or to provide better safety than existing drugs and the regulatory need to prove superiority in clinical trials are reasons why drug R&D is increasingly expensive and pharmaceutical companies need to manage extraordinarily high costs per approved new compound.
Today, virtualizing pharma R&D is increasingly related with data analytics and artificial intelligence (AI), technologies that have been developed by software companies outside the healthcare sector. The process of virtualizing pharma R&D is closely related to the technological advancements that result in the generation of large data sets ranging from genomics, proteomics, metabolomics, medical imaging, IoT wearables and large clinical trials, making it necessary for pharma companies to find new ways to store and ultimately analyze information. As a consequence, pharma companies are experimenting with AI in R&D ranging from in-silico drug design to clinical trail participants identification or dosage error reduction.
Research and Development (R&D) is crucial for the growth and future success of research-based pharma companies. To maintain their R&D organisations efficient, pharmaceutical companies started to hedge the potential of open innovation to cut R&D costs and to access external knowledge. These new strategies could be divided into several categories: open source, innovation centres, crowd sourcing and virtual R&D.