Refine
Document Type
- Journal article (5)
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Life Sciences (5)
- Texoversum (1)
Publisher
- MDPI (4)
- IM Publications Open LLP (1)
Different types of raw cotton were investigated by a commercial ultraviolet-visible/near infrared (UV-Vis/NIR) spectrometer (210–2200 nm) as well as on a home-built setup for NIR hyperspectral imaging (NIR-HSI) in the range 1100–2200 nm. UV-Vis/NIR reflection spectroscopy reveals the dominant role proteins, hydrocarbons and hydroxyl groups play in the structure of cotton. NIR-HSI shows a similar result. Experimentally obtained data in combination with principal component analysis (PCA) provides a general differentiation of different cotton types. For UV-Vis/NIR spectroscopy, the first two principal components (PC) represent 82 % and 78 % of the total data variance for the UV-Vis and NIR regions, respectively. Whereas, for NIR-HSI, due to the large amount of data acquired, two methodologies for data processing were applied in low and high lateral resolution. In the first method, the average of the spectra from one sample was calculated and in the second method the spectra of each pixel were used. Both methods are able to explain ≥90 % of total variance by the first two PCs. The results show that it is possible to distinguish between different cotton types based on a few selected wavelength ranges. The combination of HSI and multivariate data analysis has a strong potential in industrial applications due to its short acquisition time and low-cost development. This study opens a novel possibility for a further development of this technique towards real large-scale processes.
Hyperspectral imaging and reflectance spectroscopy in the range from 200–380 nm were used to rapidly detect and characterize copper oxidation states and their layer thicknesses on direct bonded copper in a non-destructive way. Single-point UV reflectance spectroscopy, as a well-established method, was utilized to compare the quality of the hyperspectral imaging results. For the laterally resolved measurements of the copper surfaces an UV hyperspectral imaging setup based on a pushbroom imager was used. Six different types of direct bonded copper were studied. Each type had a different oxide layer thickness and was analyzed by depth profiling using X-ray photoelectron spectroscopy. In total, 28 samples were measured to develop multivariate models to characterize and predict the oxide layer thicknesses. The principal component analysis models (PCA) enabled a general differentiation between the sample types on the first two PCs with 100.0% and 96% explained variance for UV spectroscopy and hyperspectral imaging, respectively. Partial least squares regression (PLS-R) models showed reliable performance with R2c = 0.94 and 0.94 and RMSEC = 1.64 nm and 1.76 nm, respectively. The developed in-line prototype system combined with multivariate data modeling shows high potential for further development of this technique towards real large-scale processes.
A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 100% API and sample set two consists of commercially available painkiller tablets. Reference measurements were performed on the pure APIs in liquid solutions (transmission) and in solid phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the prototype is based on a pushbroom imager that contains a spectrograph and charge-coupled device (CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination at the sample position. Principal component analysis (PCA) was used to differentiate the hyperspectral data of the drug samples. The first two PCs are sufficient to completely separate all samples. The rugged design of the prototype opens new possibilities for further development of this technique towards real large-scale application.
UV hyperspectral imaging (225 nm–410 nm) was used to identify and quantify the honey- dew content of real cotton samples. Honeydew contamination causes losses of millions of dollars annually. This study presents the implementation and application of UV hyperspectral imaging as a non-destructive, high-resolution, and fast imaging modality. For this novel approach, a reference sample set, which consists of sugar and protein solutions that were adapted to honeydew, was set-up. In total, 21 samples with different amounts of added sugars/proteins were measured to calculate multivariate models at each pixel of a hyperspectral image to predict and classify the amount of sugar and honeydew. The principal component analysis models (PCA) enabled a general differentiation between different concentrations of sugar and honeydew. A partial least squares regression (PLS-R) model was built based on the cotton samples soaked in different sugar and protein concentrations. The result showed a reliable performance with R2cv = 0.80 and low RMSECV = 0.01 g for the valida- tion. The PLS-R reference model was able to predict the honeydew content laterally resolved in grams on real cotton samples for each pixel with light, strong, and very strong honeydew contaminations. Therefore, inline UV hyperspectral imaging combined with chemometric models can be an effective tool in the future for the quality control of industrial processing of cotton fibers.
Cotton contamination by honeydew is considered one of the significant problems for quality in textiles as it causes stickiness during manufacturing. Therefore, millions of dollars in losses are attributed to honeydew contamination each year. This work presents the use of UV hyperspectral imaging (225–300 nm) to characterize honeydew contamination on raw cotton samples. As reference samples, cotton samples were soaked in solutions containing sugar and proteins at different concentrations to mimic honeydew. Multivariate techniques such as a principal component analysis (PCA) and partial least squares regression (PLS-R) were used to predict and classify the amount of honeydew at each pixel of a hyperspectral image of raw cotton samples. The results show that the PCA model was able to differentiate cotton samples based on their sugar concentrations. The first two principal components (PCs) explain nearly 91.0% of the total variance. A PLS-R model was built, showing a performance with a coefficient of determination for the validation (R2cv) = 0.91 and root mean square error of cross-validation (RMSECV) = 0.036 g. This PLS-R model was able to predict the honeydew content in grams on raw cotton samples for each pixel. In conclusion, UV hyperspectral imaging, in combination with multivariate data analysis, shows high potential for quality control in textiles.