Refine
Document Type
- Journal article (3)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- Elsevier (3)
Zero or plus energy office buildings must have very high building standards and require highly efficient energy supply systems due to space limitations for renewable installations. Conventional solar cooling systems use photovoltaic electricity or thermal energy to run either a compression cooling machine or an absorption-cooling machine in order to produce cooling energy during daytime, while they use electricity from the grid for the nightly cooling energy demand. With a hybrid photovoltaic-thermal collector, electricity as well as thermal energy can be produced at the same time. These collectors can produce also cooling energy at nighttime by longwave radiation exchange with the night sky and convection losses to the ambient air. Such a renewable trigeneration system offers new fields of applications. However, the technical, ecological and economical aspects of such systems are still largely unexplored.
In this work, the potential of a PVT system to heat and cool office buildings in three different climate zones is investigated. In the investigated system, PVT collectors act as a heat source and heat sink for a reversible heat pump. Due to the reduced electricity consumption (from the grid) for heat rejection, the overall efficiency and economics improve compared to a conventional solar cooling system using a reversible air-to-water heat pump as heat and cold source.
A parametric simulation study was carried out to evaluate the system design with different PVT surface areas and storage tank volumes to optimize the system for three different climate zones and for two different building standards. It is shown such systems are technically feasible today. With a maximum utilization of PV electricity for heating, ventilation, air conditioning and other electricity demand such as lighting and plug loads, high solar fractions and primary energy savings can be achieved.
Annual costs for such a system are comparable to conventional solar thermal and solar electrical cooling systems. Nevertheless, the economic feasibility strongly depends on country specific energy prices and energy policy. However, even in countries without compensation schemes for energy produced by renewables, this system can still be economically viable today. It could be shown, that a specific system dimensioning can be found at each of the investigated locations worldwide for a valuable economic and ecological operation of an office building with PVT technologies in different system designs.
During the first years of the last decade, Egypt used to face recurrent electricity cut-offs in summer. In the past few years, the electricity tariff dramatically increased. Radiative cooling to the clear night sky is a renewable energy source that represents a relative solution. The dry desert climate promotes nocturnal radiative cooling applications. This study investigates the potential of nocturnal radiative cooling systems (RCSs) to reduce the energy consumption of the residential building sector in Egypt. The system technology proposed in this work is based on uncovered solar thermal collectors integrated into the building hydronic system. By implementing different control strategies, the same system could be used for both cooling and heating applications. The goal of this paper is to analyze the performance of RCSs in residential buildings in Egypt. The dynamic simulation program TRNSYS was used to simulate the thermal behavior of the system. The relevant issues of Egypt as a case-study are firstly overviewed. Then the paper introduces the work done to develop a building model that represents a typical residential apartment in Egypt. Typical occupancy profiles were developed to define the internal thermal gains. The adopted control strategy to optimize the system operation is presented as well. To fully understand and hence evaluate the operation of the proposed RCS, four simulation cases were considered: 1. a reference case (fully passive), 2. the stand-alone operation of the RCS, 3. ideal heating & cooling operation (fully-active), and 4. the hybrid-operation (when the active cooling system is supported by the proposed RCS). The analysis considered the main three distinct climates in Egypt, represented by the cities of Alexandria, Cairo and Asyut. The hotter and drier weather conditions resulted in a higher cooling potential and larger temperature differences. The simulated cooling power in Asyut was 28.4 W/m² for a 70 m² absorber field. For a smaller field area of 10 m², the cooling power reached 109 W/m² but with humble temperature differences. To meet the rigorous thermal comfort conditions, the proposed sensible RCS cannot fully replace conventional air-conditioning units, especially in humid areas like Alexandria. When working in a hybrid system, a 10% reduction in the active cooling energy demand could be achieved in Asyut to keep the cooling set-point at 24 °C. This percentage reduction was nearly doubled when the thermal comfort set-point was increased by two degrees (26 °C). In a sensitivity analysis, external shading devices as a passive measure as well as the implementation of the Egyptian code for buildings (ECP306/1–2005) were also investigated. The analysis of this study raised other relevant aspects to discuss, e.g. system-sizing, environmental effects, limitations and recommendations.
This paper presents the first part of a research-work conducted at the University of Applied Sciences (HFT- Stuttgart). The aim of the research was to investigate the potential of low-cost renewable energy systems to reduce the energy demand of the building sector in hot and dry areas. Radiative cooling to the night sky represents a low-cost renewable energy source. The dry desert climate conditions promote radiative cooling applications. The system technology adopted in this work is based on uncovered solar thermal collectors integrated into the building’s hydronic system. By implementing different control strategies, the same system could be used for cooling as well as for heating applications. This paper focuses on identifying the collector parameters which are required as the coefficients to configure such an unglazed collector for calibrating its mathematical model within the simulation environment. The parameter identification process implies testing the collector for its thermal performance. This paper attempts to provide an insight into the dynamic testing of uncovered solar thermal collectors (absorbers), taking into account their prospective operation at nighttime for radiative cooling applications. In this study, the main parameters characterizing the performance of the absorbers for radiative cooling applications are identified and obtained from standardized testing protocol. For this aim, a number of plastic solar absorbers of different designs were tested on the outdoor test-stand facility at HFT-Stuttgart for the characterization of their thermal performance. The testing process was based on the quasi-dynamic test method of the international standard for solar thermal collectors EN ISO 9806. The test database was then used within a mathematical optimization tool (GenOpt) to determine the optimal parameter settings of each absorber under testing. Those performance parameters were significant to compare the thermal performance of the tested absorbers. The coefficients (identified parameters) were used then to plot the thermal efficiency curves of all absorbers, for both the heating and cooling modes of operation. Based on the intended main scope of the system utilization (heating or cooling), the tested absorbers could be benchmarked. Hence, one of those absorbers was selected to be used in the following simulation phase as was planned in the research-project.