Refine
Document Type
- Journal article (38)
- Conference proceeding (37)
- Book chapter (1)
Is part of the Bibliography
- yes (76)
Institute
- Informatik (76)
Publisher
- Springer (19)
- De Gruyter (16)
- Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (7)
- SPIE. The International Society for Optical Engineering (5)
- IEEE (4)
- Thieme (4)
- Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e. V. (3)
- IOP Publishing (3)
- GMDS e.V. (2)
- Elsevier (1)
Model-guided Therapy and Surgical Workflow Systems are two interrelated research fields, which have been developed separately in the last years. To make full use of both technologies, it is necessary to integrate them and connect them to Hospital Information Systems. We propose a framework for integration of Model-guided Therapy in Hospital Information Systems based on the Electronic Medical Record, and a taskbased Workflow Management System, which is suitable for clinical end users. Two prototypes - one based on Business Process Modeling Language, one based on the serum-board - are presented. From the experience with these prototypes, we developed a novel personalized visualization system for Surgical Workflows and Model-guided Therapy. Key challenges for further development are automated situation detection and a common communication infrastructure.
An operation room is a stressful work environment. Nevertheless, all involved persons have to work safely as there is no space for making mistakes. To ensure a high level of concentration and seamless interaction, all involved persons have to know their own tasks and tasks of their colleagues. The entire team must work synchronously at all times. However, the operation room (OR) is a noisy environment and the actors have to set their focus on their work. To optimize the overall workflow, a task manager supporting the team was developed. Each actor is equipped with a client terminal showing a summary of their own tasks. Moreover, a big screen displays all tasks of all actors. The architecture is a distributed system based on a communication framework that supports the interaction of all clients with the task manager. A prototype of the task manager and several clients have been developed and implemented. The system represents a proof-of-concept for further development. This paper describes the concept of the task manager.
Scheduled flexibility and individualization of knowledge transfer in foundations of computer science
(2017)
The opening of the German higher education system for new target groups involves a heterogeneous composition of students as never before and face up the universities to new challenges. Due to different educational biographies, the students don't show a homogeneous level of knowledge. Furthermore, their access to course content and their individual learning methods are very diverse. The existing lack of knowledge and the very unequal study speed have a significant influence on the learning behavior and learning motivation. During the first semesters, the dropout rate is appreciably higher. The reform project gives an overview of a didactic restructuring from a formerly conventional teaching and learning concept to a stronger combination of digital offers, combined with classical lectures in the basic modules of computer science. The teaching content is adjusted to the individual requirements and knowledge. Students with different previous knowledge get the possibility to increase their knowledge in different levels of abstraction. The aim of the reform project has to point out the possibilities, also the challenges of the digital process in higher education. At the same time the question has to be explored, how far does an accompanied and self-directed learning in own speed and in own individual depth of knowledge have a positive impact on the motivation and on the study success of a learner.
Clinical reading centers provide expertise for consistent, centralized analysis of medical data gathered in a distributed context. Accordingly, appropriate software solutions are required for the involved communication and data management processes. In this work, an analysis of general requirements and essential architectural and software design considerations for reading center information systems is provided. The identified patterns have been applied to the implementation of the reading center platform which is currently operated at the Center of Ophthalmology of the University Hospital of Tübingen.
The focus of the developed maturity model was set on processes. The concept of the widespread CMM and its practices has been transferred to the perioperative domain and the concept of the new maturity model. Additional optimization goals and technological as well as networking-specific aspects enable a process- and object-focused view of the maturity model in order to ensure broad coverage of different subareas. The evaluation showed that the model is applicable to the perioperative field. Adjustments and extensions of the maturity model are future steps to improve the rating and classification of the new maturity model.
Die minimal-invasive Chirurgie (MIC) entwickelt sich durch den Einsatz von medizinischen Robotern wie dem da Vinci System von Intuitive Surgical stetig weiter. Hierdurch kann eine bessere oder gleichwertige Operation bei deutlich geringerer körperlicher Belastung des Operateurs erreicht werden. Dabei entstehen jedoch neue Problemstellungen wie beispielsweise Kollision zwischen Roboterarmen und die benötigte Zeit zum Einrichten einer geeigneten Roboterkonfiguration. Daher ist eine effiziente Vorbereitung und Planung der Interventionen erforderlich. Diese Arbeit präsentiert einen Ansatz für eine verbesserte Planung mit Augmented Reality (AR) und einer Robotik Simulationssoftware (RS). Die Robotik Simulation dient zur Berechnung einer Roboterkonfiguration unter Vorgabe der Port-Positionen. Augmented Reality wird verwendet, um die berechneten Pose in der realen Umgebung zu visualisieren und somit leichter in den Operationssaal zu übertragen.
Die Segmentierung und das Tracking von minimal-invasiven robotergeführten Instrumenten ist ein wesentlicher Bestandteil für verschiedene computer assistierte Eingriffe. Allerdings treten in der minimal-invasiven Chirurgie, die das Anwendungsfeld für den hier beschriebenen Ansatz darstellt, häufig Schwierigkeiten durch Reflexionen, Schatten oder visuelle Verdeckungen durch Rauch und Organe auf und erschweren die Segmentierung und das Tracking der Instrumente.
Dieser Beitrag stellt einen Deep Learning Ansatz für ein markerloses Tracking von minimal-invasiven Instrumenten vor und wird sowohl auf simulierten als auch realen Daten getestet. Es wird ein simulierter als auch realer Datensatz mit Ground Truth Kennzeichnung für die binäre Segmentierung von Instrument und Hintergrund erstellt. Für den simulierten Datensatz werden Bilder aus einem simulierten Instrument und realem Hintergrund zusammengesetzt. Im Falle des realen Datensatzes spricht man von der Zusammensetzung der Bilder aus einem realen Instrument und Hintergrund. Insgesamt wird auf den simulierten Daten eine Pixelgenauigkeit von 94.70 Prozent und auf den realen Daten eine Pixelgenauigkeit von 87.30 Prozent erreicht.
The increasing heterogenecity of students at German Universities of Applied Sciences and the growing importance of digitization call for a rethinking of teaching and learning within higher education. In the next years, changing the learning ecosystem by developing and reflecting upon new teaching and learning techniques using methods of digitalization will be both - most relevant and very challenging. The following article introduces two different learning scenarios, which exemplify the implementation of new educational models that allow discontinuity of time and place, technology and process in teaching and learning. Within a blended learning apporach, the first learning scenario aims at adapting and individualizing the knowledge transfer in the course Foundations of Computer Science by providing knowledge individually and situation-specifically. The second learning scenario proposes a web-based tool to facilitate digital learning environments and thus digital learning communities and the possibility of computer-supported learning. The overall aim of both learning scenarios is to enhance learning for diverse groups by providing a different smart learning ecosystem in stepping away from a teacher-based to a student-centered approach. Both learning scenarios exemplarily represent the educational vision of Reutlingen University - its development into an interactive university.
Background and purpose: Transapical aortic valve replacement (TAVR) is a recent minimally invasive surgical treatment technique for elderly and high-risk patients with severe aortic stenosis. In this paper,a simple and accurate image-based method is introduced to aid the intra-operative guidance of TAVR procedure under 2-D X-ray fluoroscopy.
Methods: The proposed method fuses a 3-D aortic mesh model and anatomical valve landmarks with live 2-D fluoroscopic images. The 3-D aortic mesh model and landmarks are reconstructed from interventional X-ray C-arm CT system, and a target area for valve implantation is automatically estimated using these aortic mesh models.Based on template-based tracking approach, the overlay of visualized 3-D aortic mesh model, land-marks and target area of implantation is updated onto fluoroscopic images by approximating the aortic root motion from a pigtail catheter motion without contrast agent. Also, a rigid intensity-based registration algorithm is used to track continuously the aortic root motion in the presence of contrast agent.Furthermore, a sensorless tracking of the aortic valve prosthesis is provided to guide the physician to perform the appropriate placement of prosthesis into the estimated target area of implantation.
Results: Retrospective experiments were carried out on fifteen patient datasets from the clinical routine of the TAVR. The maximum displacement errors were less than 2.0 mm for both the dynamic overlay of aortic mesh models and image-based tracking of the prosthesis, and within the clinically accepted ranges. Moreover, high success rates of the proposed method were obtained above 91.0% for all tested patient datasets.
Conclusion: The results showed that the proposed method for computer-aided TAVR is potentially a helpful tool for physicians by automatically defining the accurate placement position of the prosthesis during the surgical procedure.