Refine
Document Type
- Journal article (14)
- Conference proceeding (14)
- Book chapter (1)
Is part of the Bibliography
- yes (29)
Institute
- Informatik (29)
Publisher
- Elsevier (8)
- Springer (8)
- IEEE (4)
- Hochschule Reutlingen (3)
- MDPI (3)
- Cuvillier Verlag (1)
- Frontiers Research Foundation (1)
- IOS Press (1)
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.
This document presents an algorithm for a nonobtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.
The goal of the presented project is to develop the concept of home e-health centers for barrier-free and cross-border telemedicine. AAL technologies are already present on the market but there is still a gap to close until they can be used for ordinary patient needs. The general idea needs to be accompanied by new services, which should be brought together in order to provide a full coverage of service for the users. Sleep and stress were chosen as predominant influence in the population. The executed scientific study of available home devices analyzing sleep has provided the necessary to select appropriate devices. The first choice for the project implementation is the device EMFIT QS+. This equipment provides a part of a complete system that a home telemedical hospital can provide at a level of precision and communication with internal and/or external health services.
Thematic issue on human-centred ambient intelligence: cognitive approaches, reasoning and learning
(2017)
This editorial presents advances on human-centred Ambient Intelligence applications which take into account cognitive issues when modelling users (i.e. stress, attention disorders), and learn users’ activities/preferences and adapt to them (i.e. at home, driving a car). These papers also show AmI applications in health and education, which make them even more valuable for the general society.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming.
In previous studies, we used a method for detecting stress that was based exclusively on heart rate and ECG for differentiation between such situations as mental stress, physical activity, relaxation, and rest. As a response of the heart to these situations, we observed different behavior in the Root Mean Square of the Successive differences heartbeats (RMSSD). This study aims to analyze Virtual Reality via a virtual reality headset as an effective stressor for future works. The value of the Root Mean Square of the Successive Differences is an important marker for the parasympathetic effector on the heart and can provide information about stress. For these measurements, the RR interval was collected using a breast belt. In these studies, we can observe the Root Mean Square of the successive differences heartbeats. Additional sensors for the analysis were not used. We conducted experiments with ten subjects that had to drive a simulator for 25 minutes using monitors and 25 minutes using virtual reality headset. Before starting and after finishing each simulation, the subjects had to complete a survey in which they had to describe their mental state. The experiment results show that driving using virtual reality headset has some influence on the heart rate and RMSSD, but it does not significantly increase the stress of driving.
Methods based exclusively on heart rate hardly allow to differentiate between physical activity, stress, relaxation, and rest, that is why an additional sensor like activity/movement sensor added for detection and classification. The response of the heart to physical activity, stress, relaxation, and no activity can be very similar. In this study, we can observe the influence of induced stress and analyze which metrics could be considered for its detection. The changes in the Root Mean Square of the Successive Differences provide us with information about physiological changes. A set of measurements collecting the RR intervals was taken. The intervals are used as a parameter to distinguish four different stages. Parameters like skin conductivity or skin temperature were not used because the main aim is to maintain a minimum number of sensors and devices and thereby to increase the wearability in the future.