Refine
Document Type
- Conference proceeding (5)
- Journal article (3)
- Book chapter (1)
Is part of the Bibliography
- yes (9)
Institute
- Informatik (9)
Publisher
- Springer (4)
- Elsevier (2)
- Cuvillier Verlag (1)
- IEEE (1)
- IOP Publishing (1)
Vehicles have been so far improved in terms of energy-efficiency and safety mainly by optimising the engine and the power train. However, there are opportunities to increase energy-efficiency and safety by adapting the individual driving behaviour in the given driving situation. In this paper, an improved rule match algorithm is introduced, which is used in the expert system of a human-centred driving system. The goal of the driving system is to optimise the driving behaviour in terms of energy-efficiency and safety by giving recommendations to the driver. The improved rule match algorithm checks the incoming information against the driving rules to recognise any breakings of a driving rule. The needed information is obtained by monitoring the driver, the current driving situation as well as the car, using in-vehicle sensors and serial-bus systems. On the basis of the detected broken driving rules, the expert system will create individual recommendations in terms of energy-efficiency and safety, which will allow eliminating bad driving habits, while considering the driver needs.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.
Stress is recognized as a factor of predominant disease and in the future the costs for treatment will increase. The presented approach tries to detect stress in a very basic and easy to implement way, so that the cost for the device and effort to wear it remain low. The user should benefit from the fact that the system offers an easy interface reporting the status of his body in real time. In parallel, the system provides interfaces to pass the obtained data forward for further processing and (professional) analyses, in case the user agrees. The system is designed to be used in every day’s activities and it is not restricted to laboratory use or environments. The implementation of the enhanced prototype shows that the detection of stress and the reporting can be managed using correlation plots and automatic pattern recognition even on a very light weighted microcontroller platform.
Thematic issue on human-centred ambient intelligence: cognitive approaches, reasoning and learning
(2017)
This editorial presents advances on human-centred Ambient Intelligence applications which take into account cognitive issues when modelling users (i.e. stress, attention disorders), and learn users’ activities/preferences and adapt to them (i.e. at home, driving a car). These papers also show AmI applications in health and education, which make them even more valuable for the general society.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
Detecting the adherence of driving rules in an energy-efficient, safe and adaptive driving system
(2016)
An adaptive and rule-based driving system is being developed that tries to improve the driving behavior in terms of the energy-efficiency and safety by giving recommendations. Therefore, the driving system has to monitor the adherence of driving rules by matching the rules to the driving behavior. However, existing rule matching algorithms are not sufficient, as the data within a driving system is changing frequently. In this paper a rule matching algorithm is introduced that is able to handle frequently changing data within the context of the driving system. 15 journeys were used to evaluate the performance of the rule matching algorithms. The results showed that the introduced algorithm outperforms existing algorithms in the context of the driving system. Thus, the introduced algorithm is suited for matching frequently changing data against rules with a higher performance, why it will be used in the driving system for the detection of broken energy-efficiency of safety-relevant driving rules.
In the last decades, several driving systems were developed to improve the driving behaviour in energy efficiency or safety. However, these driving systems cover either the area of energy-efficiency or safety. Furthermore, they do not consider the stress level of the driver when showing a recommendation, although stress can lead to an unsafe or inefficient driving behaviour. In this paper, an approach is presented to consider the driver stress level in a driving system for safe and energy-efficient driving behaviour. The driving system tries to suppress a recommendation when the driver is in stress in order not to stress the driver additionally with recommendations in a stressful driving situation. This can lead to an increase in the road safety and in the user acceptance of the driving system, as the driver is not getting bothered or stressed by the driving system.
The evaluation of the approach showed, that the driving system
is able to show recommendations to the driver, while also reacting
to a high stress level by suppressing recommendations in
order not to stress the driver additionally.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there are several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
This document presents an algorithm for a nonobtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.