Refine
Document Type
- Journal article (4)
- Conference proceeding (2)
Language
- English (6)
Has full text
- yes (6)
Is part of the Bibliography
- yes (6)
Institute
- ESB Business School (5)
- Technik (1)
Learning factories on demand
(2021)
Learning Factories are research and learning environments that demonstrate new concepts and technologies for the industry in a practical environment. The interaction between physical and virtual components is a central aspect. The mediation and presentation usually occur directly in the learning factory and are thus limited in time and concerning the user group. A learning factory- on-demand- can be provided by dividing and virtualizing the individual components via containers and microservices. This enables both local operation and operation hybrid cloud or cloud systems. Physical components can be mapped either through standardized interfaces or suitable emulators. Using the example of the Learning Factory at Reutlingen University (Werk150), it will be shown how different use cases can be made available utilizing software-based orchestration, thus promoting broader and more independent teaching.
Conventional production systems are evolving through cyber-physical systems and application-oriented approaches of AI, more and more into "smart" production systems, which are characterized among other things by a high level of communication and integration of the individual components. The exchange of information between the systems is usually only oriented towards the data content, where semantics is usually only implicitly considered. The adaptability required by external and internal influences requires the integration of new or the redesign of existing components. Through an open application-oriented ontology the information and communication exchange are extended by explicit semantic information. This enables a better integration of new and an easier reconfiguration of existing components. The developed ontology, the derived application and use of the semantic information will be evaluated by means of a practical use case.
Modern production systems are characterized by the increasingly use of CPS and IoT networks. However, processing the available information for adaptation and reconfiguration often occurs in relatively large time cycles. It thus does not take advantage of the optimization potential available in the short term. In this paper, a concept is presented that, considering the process information of the individual heterogeneous system elements, detects optimization potentials and performs or proposes adaptation or reconfiguration. The concept is evaluated utilizing a case study in a learning factory. The resulting system thus enables better exploitation of the potentials of the CPPS.
The paradigmatic shift of production systems towards Cyber-Physical Production Systems (CPPSs) requires the development of flexible and decentralized approaches. In this way, such systems enable manufacturers to respond quickly and accurately to changing requirements. However, domain-specific applications require the use of suitable conceptualizations. The issue at hand, when using various conceptualizations is the interoperability of different ontologies. To achieve flexibility and adaptability in CPPSs though requires overcoming interoperability issues within CPPSs. This paper presents an approach to increase flexibility and adaptability in CPPSs while addressing the interoperability issue. In this work, OWL ontologies conceptualize domain knowledge. The Intelligent Manufacturing Knowledge Ontology Repository (IMKOR) connects the domain knowledge in different ontologies. Testing if adaptions in one ontology within the IMKOR provide knowledge to the whole IMKOR. The tests showed, positive results and the repository makes the knowledge available to the whole CPPS. Furthermore, an increase in flexibility and adaptability was noticed.
Cyber-Physical Production Systems increasingly use semantic information to meet the grown flexibility requirements. Ontologies are often used to represent and use this semantic information. Existing systems focus on mapping knowledge and less on the exchange with other relevant IT systems (e.g., ERP systems) in which crucial semantic information, often implicit, is contained. This article presents an approach that enables the exchange of semantic information via adapters. The approach is demonstrated by a use case utilizing an MES system and an ERP system.
The imparting of knowledge and skills in STEM education, especially under the influence of the Covid-19 pandemic, is increasingly taking place online and through digital formats. The partially asynchronous instruction eliminates, on the one hand, the social relation in the learning process and, on the other hand, the direct experience with physical objects. Here, the digital learning systems provide learning tools and controls to support the learning process on a general basis. Existing methods for simulating physical objects (digital twins) are also used to a minimal extent. The following approach presents a learning system framework that enables individualized learning, including all dimensions (social, physical). Implementing a concept that uses a personalized assistance system to orchestrate the individual learning steps enables efficient and effective learning. Applying the learning system framework exemplifies the STEM education at Reutlingen University in the logistics learning factory Werk150.