Refine
Document Type
- Article (1)
- Conference Proceeding (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Informatik (2)
- Technik (1)
Deep learning-based EEG detection of mental alertness states from drivers under ethical aspects
(2021)
One of the most critical factors for a successful road trip is a high degree of alertness while driving. Even a split second of inattention or sleepiness in a crucial moment, will make the difference between life and death. Several prestigious car manufacturers are currently pursuing the aim of automated drowsiness identification to resolve this problem. The path between neuro-scientific research in connection with artificial intelligence and the preservation of the dignity of human individual’s and its inviolability, is very narrow. The key contribution of this work is a system of data analysis for EEGs during a driving session, which draws on previous studies analyzing heart rate (ECG), brain waves (EEG), and eye function (EOG). The gathered data is hereby treated as sensitive as possible, taking ethical regulations into consideration. Obtaining evaluable signs of evolving exhaustion includes techniques that obtain sleeping stage frequencies, problematic are hereby the correlated interference’s in the signal. This research focuses on a processing chain for EEG band splitting that involves band-pass filtering, principal component analysis (PCA), independent component analysis (ICA) with automatic artefact severance, and fast fourier transformation (FFT). The classification is based on a step-by-step adaptive deep learning analysis that detects theta rhythms as a drowsiness predictor in the pre-processed data. It was possible to obtain an offline detection rate of 89% and an online detection rate of 73%. The method is linked to the simulated driving scenario for which it was developed. This leaves space for more optimization on laboratory methods and data collection during wakefulness-dependent operations.
Artefaktkorrektur und verfeinerte Metriken für ein EEG-basiertes System zur Müdigkeitserkennung
(2019)
Fragestellung: Müdigkeit ist ein oft unterschätztes, aber dennoch großes Problem im Straßenverkehr. Von rund 2,5 Mio. Verkehrsunfällen 2015 in Deutschland, waren 2898 Unfälle, mit insgesamt 59 Toten (~1,7 % der Todesfälle), auf Übermüdung zurückzuführen. Schätzungen gehen von einer Dunkelziffer von bis zu 20 % aus. In einer ersten eigenen Studie wurde überprüft, ob ein mobiles EEG in einem Fahrsimulator Müdigkeitszustände zuverlässig erkennen kann. Die Erkennungsrate lag lediglich bei 61 %. Ziel dieser Arbeit ist, das verwendete Messsystem zu verbessern. Dazu wird die Genauigkeit durch eine Artefaktkorrektur und mit Hilfe von verfeinerten Qualitätsmetriken erhöht. Eine erkannte Übermüdung wird dem Fahrer dann in angemessener Weise angezeigt, so dass er entsprechend reagieren kann.
Patienten und Methoden: Die Independent Component Analysis (ICA) ist ein multivariates Verfahren, um mehrere Zufallsvariablen zu analysieren. Für die Entscheidung, ob ein Fahrer gerade müde oder wach ist, wird der erstellte Merkmalsvektor für jede Sequenz mit ICA klassifiziert. Dafür wird ein trainierter Machine-Learning-Algorithmus eingesetzt, der in der Lage ist, auch unbekannte Datensätze in Klassen einzuteilen. Um die benötigten Frequenzwerte zu erhalten, wurde für jeden EEG-Kanal eine Fourier Transformation durchgeführt. Der erstellte Merkmalsvektor wird im nächsten Schritt durch ein Künstliches Neuronales Netz klassifiziert. Für das Training werden vorab erstellte Merkmalsvektoren mit den Klassen „Wach“ und „Müde“ versehen. Diese Daten werden zufällig gemischt und im Verhältnis 2:1 in eine Trainings- und Testmenge geteilt. Das Experiment wurde mit acht Personen mit jeweils zweimal 45 min Testfahrt durchgeführt.
Ergebnisse: Der komplette Datensatz besteht aus 150.000 Signalwerten, welche zu ca. 7000 Sequenzen zusammengefasst werden. Durch die Anwendung der Qualitätsmetrik bleiben 4370 Sequenzen für das Training übrig. Bei invaliden Sequenzen aufgrund von EEG-Artefakten gibt es deutliche Unterschiede. Im „Wach“ Zustand werden dreimal so viele Sequenzen verworfen als im „Müde“ Zustand. Insgesamt werden bei wachen Probanden im Schnitt ca. 50 % der Sequenzen verworfen, bei Müden lediglich 25 %. Im Durchschnitt erreicht das System eine Erkennungsrate von 73 % für beide Zustände. Vergleicht man nun das Verhältnis von „Wach“ und „Müde“ und lässt „Leichte Müdigkeit“ außen vor, liegen die Ergebnisse bei über 90 %.
Schlussfolgerungen: Die Ergebnisse zeigen, dass die Aufmerksamkeit während des Experiments abnimmt bzw. die Müdigkeit zunimmt. Dies verdeutlichen zum einen subjektive und objektive Beobachtungen von Müdigkeitsanzeichen. Zum anderen lassen sich messbare und klassifizierbare Unterschiede im EEG Signal nachweisen. Die als Merkmale eingesetzten Theta-Wellen zeigten eine niedrigere Amplitude gegen Ende des Experiments. Die Erweiterung der binären Klassifizierung führt zu einer weiteren Stabilisierung der Ergebnisse. Artefaktkorrektur und Qualitätsmetriken steigern die Güte der Daten weiter. Die entwickelte Anwendung zur Müdigkeitserkennung ermittelt messbare Zeichen von Müdigkeit und kann eine gute Entscheidung über die Fahrtauglichkeit treffen.